Superplasticity in Ti–6Al–4V: Characterisation, modelling and applications

[1]  S. Suwas,et al.  Deformation mechanisms during superplastic testing of Ti–6Al–4V–0.1B alloy , 2013 .

[2]  Jianguo Lin,et al.  Modelling of dominant softening mechanisms for Ti-6Al-4V in steady state hot forming conditions , 2013 .

[3]  I. Hurtado,et al.  New Strategy for the Prediction of the Gas Pressure Profile of Superplastic Forming of Al-5083 Aluminium Alloy , 2012 .

[4]  P. Blackwell,et al.  Modeling the Super Plastic Forming of a Multi-Sheet Diffusion Bonded Titanium Alloy Demonstrator Fan Blade , 2012 .

[5]  S. V. Ivanov,et al.  Simulation of the Blow-Up and Cooling Processes of Hollow Blade Manufacturing , 2012 .

[6]  H. Yang,et al.  Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution , 2011 .

[7]  R. Todd,et al.  Surface studies of Region II superplasticity of AA5083 in shear: Confirmation of diffusion creep, grain neighbour switching and absence of dislocation activity , 2011 .

[8]  H. Yoshida,et al.  Mantle superplasticity and its self-made demise , 2010, Nature.

[9]  Mark F. Horstemeyer,et al.  Historical review of internal state variable theory for inelasticity , 2010 .

[10]  He Yang,et al.  A numerical model based on internal-state-variable method for the microstructure evolution during hot-working process of TA15 titanium alloy , 2010 .

[11]  Bai Bingzhe,et al.  Three Dimensional FEM Simulation of Titanium Hollow Blade Forming Process , 2010 .

[12]  P. Bate,et al.  Diffusion creep and superplasticity in aluminium alloys , 2010 .

[13]  Jiao Luo,et al.  Constitutive model for high temperature deformation of titanium alloys using internal state variables , 2010 .

[14]  T. Langdon Seventy-five years of superplasticity: historic developments and new opportunities , 2009 .

[15]  R. Mishra,et al.  Microstructural evolution and grain boundary sliding in a superplastic magnesium AZ31 alloy , 2009 .

[16]  Mark Gee,et al.  Comparison of EBSD and conventional methods of grain size measurement of hardmetals , 2009 .

[17]  Jian Cao,et al.  A study on formulation of objective functions for determining material models , 2008 .

[18]  T. Langdon,et al.  Grain boundary sliding in a superplastic zinc-aluminum alloy processed using severe plastic deformation , 2008 .

[19]  S. Leen,et al.  A superplastic forming limit diagram concept for Ti-6Al-4V , 2007 .

[20]  M. Khraisheh,et al.  The effect of strain rate sensitivity evolution on deformation stability during superplastic forming , 2007 .

[21]  P. Comley The ASTM International Standard Test Method for Determining the Superplastic Properties of Metallic Materials , 2007 .

[22]  A. J. Barnes Superplastic Forming 40 Years and Still Growing , 2007 .

[23]  T. Raghu,et al.  Advanced superplastic forming and diffusion bonding of titanium alloy , 2006 .

[24]  S. Semiatin,et al.  Low-temperature superplasticity of ultra-fine-grained Ti-6Al-4V processed by equal-channel angular pressing , 2006 .

[25]  T. Nishimura,et al.  Superplastic deformation of nano-sized silicon nitride ceramics , 2006 .

[26]  Mohammad A. Nazzal,et al.  Combined Mechanics-Materials Based Optimization of Superplastic Forming of Magnesium AZ31 Alloy , 2006 .

[27]  S. Leen,et al.  A Sigmoidal Model for Superplastic Deformation , 2005 .

[28]  Y. Liu,et al.  Development of dislocation-based unified material model for simulating microstructure evolution in multipass hot rolling , 2005 .

[29]  Mohammad A. Nazzal,et al.  Finite element modeling and optimization of superplastic forming using variable strain rate approach , 2004 .

[30]  K. M. Liew,et al.  Three-dimensional modeling and simulation of superplastic forming , 2004 .

[31]  Zhengxiao Guo,et al.  Microstructural evolution of a Ti–6Al–4V alloy during β-phase processing: experimental and simulative investigations , 2004 .

[32]  Y. Liu,et al.  A set of unified constitutive equations for modelling microstructure evolution in hot deformation , 2003 .

[33]  J. Kim,et al.  Constitutive analysis of the high-temperature deformation of Ti-6Al-4V with a transformed microstructure , 2003 .

[34]  M. Pietrzyk,et al.  Analysis of work hardening and recrystallization during the hot working of steel using a statistically based internal variable model , 2003 .

[35]  Rajiv S. Mishra,et al.  Superplastic deformation behaviour of friction stir processed 7075Al alloy , 2002 .

[36]  Jung-Ho Cheng,et al.  Fracture criterion and forming pressure design for superplastic bulging , 2002 .

[37]  R. C. Picu,et al.  Mechanical behavior of Ti-6Al-4V at high and moderate temperatures-Part II: constitutive modeling , 2002 .

[38]  Thomas R. Bieler,et al.  The effect of alpha platelet thickness on plastic flow during hot working of TI–6Al–4V with a transformed microstructure , 2001 .

[39]  Z. Guo,et al.  Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization , 2001 .

[40]  Sung Wook Chung,et al.  Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures , 2001 .

[41]  Sia Nemat-Nasser,et al.  Dynamic response of conventional and hot isostatically pressed Ti–6Al–4V alloys: experiments and modeling , 2001 .

[42]  Jung-Ho Cheng,et al.  The analysis of instability and strain concentration during superplastic deformation , 2001 .

[43]  H. Zbib,et al.  Constitutive modeling of deformation and damage in superplastic materials , 2001 .

[44]  S. Semiatin,et al.  Flow behavior and globularization kinetics during hot working of Ti–6Al–4V with a colony alpha microstructure , 1999 .

[45]  Jung-Min Kim,et al.  Microstructural analysis on boundary sliding and its accommodation mode during superplastic deformation of Ti–6Al–4V alloy , 1999 .

[46]  Laszlo S. Toth,et al.  A dislocation-based model for all hardening stages in large strain deformation , 1998 .

[47]  F. Dunne,et al.  Modelling Heterogeneous Microstructures, Inhomogeneous Deformation and Failure in Superplasticity , 1998 .

[48]  Yuri Estrin,et al.  Dislocation Theory Based Constitutive Modelling: Foundations and Applications , 1998 .

[49]  Min Zhou,et al.  Constitutive modeling of the viscoplastic deformation in high temperature forging of titanium alloy IMI834 , 1998 .

[50]  F. Dunne Inhomogeneity of microstructure in superplasticity and its effect on ductility , 1998 .

[51]  Fionn P.E. Dunne,et al.  Mechanisms-based constitutive equations for the superplastic behaviour of a titanium alloy , 1996 .

[52]  A. Mukherjee,et al.  Cooperative phenomena at grain boundaries during superplastic flow , 1995 .

[53]  R. Valiev,et al.  An investigation of the role of intragranular dislocation strain in the superplastic Pb-62% Sn eutectic alloy , 1993 .

[54]  M. F. Ashby,et al.  Physical modelling of materials problems , 1992 .

[55]  M. Mayo,et al.  Direct observation of superplastic flow mechanisms in torsion , 1989 .

[56]  P. Perzyna Constitutive Modeling of Dissipative Solids for Postcritical Behavior and Fracture , 1984 .

[57]  U. F. Kocks,et al.  Kinetics of flow and strain-hardening☆ , 1981 .

[58]  W. Nix,et al.  Diffusional creep and diffusionally accommodated grain rearrangement , 1978 .

[59]  W. Roberts,et al.  A nucleation criterion for dynamic recrystallization during hot working , 1978 .

[60]  Rolf Sandström,et al.  A model for hot working occurring by recrystallization , 1974 .

[61]  G. S. Murty Stress relaxation in superplastic materials , 1973 .

[62]  Michael F. Ashby,et al.  Diffusion-accommodated flow and superplasticity , 1973 .