Electrodeposited Co0.85Se thin films as free-standing cathode materials for high-performance hybrid supercapacitors

[1]  Yi Wang,et al.  Favorable anion adsorption/desorption of high rate NiSe2 nanosheets/hollow mesoporous carbon for battery-supercapacitor hybrid devices , 2020, Nano Research.

[2]  Saied Saeed Hosseiny Davarani,et al.  Construction of complex copper-cobalt selenide hollow structures as an attractive battery-type electrode material for hybrid supercapacitors , 2020 .

[3]  Yi Wang,et al.  Ni-Co selenide nanowires supported on conductive wearable textile as cathode for flexible battery-supercapacitor hybrid devices , 2020 .

[4]  Saied Saeed Hosseiny Davarani,et al.  A rational design of nanoporous Cu-Co-Ni-P nanotube arrays and CoFe2Se4 nanosheet arrays for flexible solid-state asymmetric devices. , 2020 .

[5]  Saied Saeed Hosseiny Davarani,et al.  Rational Construction of Core‐Shell Ni−Mn−Co−S@Co(OH) 2 Nanoarrays toward High‐Performance Hybrid Supercapacitors , 2020 .

[6]  S. S. Hosseiny Davarani,et al.  Boosting the energy density of supercapacitors by encapsulating a multi-shelled zinc-cobalt-selenide hollow nanosphere cathode and a yolk-double shell cobalt-iron-selenide hollow nanosphere anode in a graphene network. , 2020, Nanoscale.

[7]  Zdenek Sofer,et al.  Graphitic nanofibers decorated with Ni3S2 interlaced nanosheets as efficient binder-free cathodes for hybrid supercapacitors , 2020 .

[8]  C. Cao,et al.  Rapid and simplistic microwave assisted method to synthesise cobalt selenide nanosheets; a prospective material for high performance hybrid supercapacitor , 2020 .

[9]  Akbar Mohammadi Zardkhoshoui,et al.  Enhanced the energy density of supercapacitors via rose-like nanoporous ZnGa2S4 hollow spheres cathode and yolk-shell FeP hollow spheres anode , 2020 .

[10]  Saied Saeed Hosseiny Davarani,et al.  Formation of graphene-wrapped multi-shelled NiGa2O4 hollow spheres and graphene-wrapped yolk-shell NiFe2O4 hollow spheres derived from metal-organic frameworks for high-performance hybrid supercapacitors. , 2020 .

[11]  B. Du,et al.  Synthesis of CoTe nanowires: a new electrode material for supercapacitor with high stability and high performance , 2019, Nanotechnology.

[12]  N. Kim,et al.  All ternary metal selenide nanostructures for high energy flexible charge storage devices , 2019, Nano Energy.

[13]  Yijing Wang,et al.  Metal oxide-based supercapacitors: progress and prospectives , 2019, Nanoscale advances.

[14]  A. Azad,et al.  Advanced materials and technologies for hybrid supercapacitors for energy storage – A review , 2019, Journal of Energy Storage.

[15]  X. Lou,et al.  Construction of CoO/Co‐Cu‐S Hierarchical Tubular Heterostructures for Hybrid Supercapacitors , 2019, Angewandte Chemie International Edition.

[16]  Qiang Sun,et al.  Electrodeposition of Ni-Se in a chloride electrolyte: An insight of diffusion and nucleation mechanisms , 2019, Journal of Electroanalytical Chemistry.

[17]  Pengxiao Sun,et al.  Nickel-cobalt based aqueous flexible solid state supercapacitors with high energy density by controllable surface modification , 2019, Journal of Power Sources.

[18]  E. Erdem,et al.  Current progress achieved in novel materials for supercapacitor electrodes: mini review , 2019, Nanoscale advances.

[19]  D. Kaur,et al.  Binder free and high performance of sputtered tungsten nitride thin film electrode for supercapacitor device , 2019, International Journal of Hydrogen Energy.

[20]  Lixian Sun,et al.  Facile Green Route to Ni/Co Oxide Nanoparticle Embedded 3D Graphitic Carbon Nanosheets for High Performance Hybrid Supercapacitor Devices , 2019, ACS Applied Energy Materials.

[21]  A. Biris,et al.  Simultaneous Electrochemical Deposition of Cobalt Complex and Poly(pyrrole) Thin Films for Supercapacitor Electrodes , 2019, Scientific Reports.

[22]  Jinping Liu,et al.  Definitions of Pseudocapacitive Materials: A Brief Review , 2019, ENERGY & ENVIRONMENTAL MATERIALS.

[23]  J. R. Rani,et al.  An Ultra-High-Energy Density Supercapacitor; Fabrication Based on Thiol-functionalized Graphene Oxide Scrolls , 2019, Nanomaterials.

[24]  Hongyang Zhao,et al.  Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. , 2018, Nanoscale.

[25]  M. Miao,et al.  Novel core/shell CoSe2@PPy nanoflowers for high-performance fiber asymmetric supercapacitors , 2018 .

[26]  Xiaobo Ji,et al.  3D interconnected ultrathin cobalt selenide nanosheets as cathode materials for hybrid supercapacitors , 2018 .

[27]  G. Fang,et al.  Rational Construction of Hollow Core-Branch CoSe2 Nanoarrays for High-Performance Asymmetric Supercapacitor and Efficient Oxygen Evolution. , 2018, Small.

[28]  Jun Yu Li,et al.  Nucleation/Growth Mechanisms and Morphological Evolution of Porous MnO2 Coating Deposited on Graphite for Supercapacitor , 2017, Materials.

[29]  S. Maiti,et al.  Large-scale synthesis of porous NiCo2O4 and rGO–NiCo2O4 hollow-spheres with superior electrochemical performance as a faradaic electrode , 2017 .

[30]  Balakrishnan Kirubasankar,et al.  Hydrothermal assisted in situ growth of CoSe onto graphene nanosheets as a nanohybrid positive electrode for asymmetric supercapacitors , 2017 .

[31]  Zaharaddeen S. Iro A Brief Review on Electrode Materials for Supercapacitor , 2016 .

[32]  Junwei Lang,et al.  A high-temperature flexible supercapacitor based on pseudocapacitive behavior of FeOOH in an ionic liquid electrolyte , 2016 .

[33]  Eider Goikolea,et al.  Review on supercapacitors: Technologies and materials , 2016 .

[34]  Jie Yu,et al.  Synergistic enhancement of electrochemical performance of electrospun TiC/C hybrid nanofibers for supercapacitor application , 2015 .

[35]  Caijin Huang,et al.  Cobalt selenide: a versatile cocatalyst for photocatalytic water oxidation with visible light , 2015 .

[36]  L. Broch,et al.  Growth Mechanism during the Early Stages of electrodeposition of Bismuth telluride films , 2015 .

[37]  Junwei Lang,et al.  A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials , 2014 .

[38]  H. Gómez,et al.  Growth and characterization of ZnO nanowire arrays electrodeposited into anodic alumina templates in DMSO solution , 2012, Journal of Solid State Electrochemistry.

[39]  Zhian Zhang,et al.  Electrodeposition of Cobalt Selenide Thin Films , 2010 .

[40]  P. S. Pizani,et al.  Hexagonal CoSe formation in mechanical alloyed Co75Se25 mixture , 2004 .

[41]  B. Langner Selenium and selenium compounds. , 2000, IARC monographs on the evaluation of the carcinogenic risk of chemicals to man.

[42]  E. Vallés,et al.  Nickel electrodeposition on different metallic substrates , 1995 .

[43]  B. Scharifker,et al.  Theoretical and experimental studies of multiple nucleation , 1983 .

[44]  Jian Liu,et al.  Pseudocapacitive Co9S8/graphene electrode for high-rate hybrid supercapacitors , 2019, Carbon.

[45]  Zhiqiang Niu,et al.  Smart supercapacitors from materials to devices , 2019, InfoMat.

[46]  Hyunsoo Kim,et al.  Potentiodynamic Electrodeposition of CoSe2 Films and Their Excellent Electrocatalytic Activity as Counter Electrodes for Dye-Sensitized Solar Cells , 2019, Journal of The Electrochemical Society.

[47]  H. Gómez,et al.  Erratum to: Growth and characterization of ZnO nanowire arrays electrodeposited into anodic alumina templates in DMSO solution , 2012, Journal of Solid State Electrochemistry.

[48]  I. M. Dharmadasa,et al.  Strengths and Advantages of Electrodeposition as a Semiconductor Growth Technique for Applications in Macroelectronic Devices , 2006 .