Modification of the photocatalytic properties of self doped TiO2 nanoparticles for hydrogen generation using sunlight type radiation

[1]  R. Naik,et al.  Highly dispersed phase of SnO2 on TiO2 nanoparticles synthesized by polyol-mediated route: Photocatalytic activity for hydrogen generation , 2009 .

[2]  S. Chavadej,et al.  Comparative investigation of mesoporous- and non-mesoporous-assembled TiO2 nanocrystals for photocatalytic H2 production over N-doped TiO2 under visible light irradiation , 2008 .

[3]  R. Naik,et al.  Enhanced photocatalytic hydrogen evolution over nanometer sized Sn and Eu doped titanium oxide , 2008 .

[4]  M. Fernández-García,et al.  Nanostructured Ti–M mixed-metal oxides: Toward a visible light-driven photocatalyst , 2008 .

[5]  Zhixiang Liu,et al.  Studies on the enhanced photocatalytic hydrogen evolution over Pt/PEG-modified TiO2 photocatalysts , 2008 .

[6]  A. Corma,et al.  Enhancement of the photocatalytic activity of TiO2 through spatial structuring and particle size control: from subnanometric to submillimetric length scale. , 2008, Physical chemistry chemical physics : PCCP.

[7]  Jinlong Zhang,et al.  Synthesis and Characterization of Nitrogen-Doped TiO2 Nanophotocatalyst with High Visible Light Activity , 2007 .

[8]  H. Fu,et al.  Study on the mechanisms of photoinduced carriers separation and recombination for Fe3+–TiO2 photocatalysts , 2007 .

[9]  P. Kamat Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion , 2007 .

[10]  Rajender S. Varma,et al.  Thermally Stable Nanocrystalline TiO2 Photocatalysts Synthesized via Sol−Gel Methods Modified with Ionic Liquid and Surfactant Molecules , 2006 .

[11]  M. Fernández-García,et al.  Nitrogen-containing TiO2 photocatalysts. Part 2. Photocatalytic behavior under sunlight excitation , 2006 .

[12]  S. Yin,et al.  Visible-light induced photocatalytic activity of TiO2−xAy (A = N, S) prepared by precipitation route , 2006 .

[13]  Shudan Li,et al.  Effects of Sn dopant on the photoinduced charge property and photocatalytic activity of TiO2 nanoparticles , 2006 .

[14]  S. Yoshikawa,et al.  Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO2 photocatalysts , 2005 .

[15]  Hideki Kato,et al.  Strategies for the Development of Visible-light-driven Photocatalysts for Water Splitting , 2004 .

[16]  T. Tuziuti,et al.  Optimum bubble temperature for the sonochemical production of oxidants. , 2004, Ultrasonics.

[17]  Tsuyoshi Takata,et al.  Photocatalytic Activity Enhancing for Titanium Dioxide by Co-doping with Bromine and Chlorine , 2004 .

[18]  B. Ohtani,et al.  Nanocrystalline Brookite-Type Titanium(IV) Oxide Photocatalysts Prepared by a Solvothermal Method: Correlation Between Their Physical Properties and Photocatalytic Activities , 2003 .

[19]  Christoph Böttcher,et al.  A comparative study of nanometer sized Fe(III)-doped TiO2photocatalysts: synthesis, characterization and activity , 2003 .

[20]  P. Ordejón,et al.  Designed Self‐Doped Titanium Oxide Thin Films for Efficient Visible‐Light Photocatalysis , 2002 .

[21]  P. M. Kumar,et al.  Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states , 2000 .

[22]  B. Ohtani,et al.  Photocatalytic Activity of Amorphous−Anatase Mixture of Titanium(IV) Oxide Particles Suspended in Aqueous Solutions , 1997 .

[23]  A. Gonzalez-Elipe,et al.  Oxidation and diffusion processes in nickel-titanium oxide systems , 1993 .

[24]  Y. Kuo,et al.  The pore structure of chrominophosphate catalysts , 1992 .

[25]  C. Gout,et al.  Electronic band structure of titanium dioxide , 1977 .

[26]  B. Ohtani,et al.  Instructions for use Title Quantitative analysis of defective sites in titanium ( IV ) oxide photocatalyst powders , 2017 .

[27]  M. W. Roberts,et al.  The identification and characterisation of mixed oxidation states at oxidised titanium surfaces by analysis of X-ray photoelectron spectra , 1987 .

[28]  R. Pierotti,et al.  International Union of Pure and Applied Chemistry Physical Chemistry Division Commission on Colloid and Surface Chemistry including Catalysis* Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Porosity Reporting Physisorption Data for , 2022 .