Abstract Effective porosity in solute-transport analyses is usually estimated rather than calculated from tracer tests in the field or laboratory. Calculated values of effective porosity in the laboratory on three different textured samples were compared to estimates derived from particle-size distributions and soil–water characteristic curves. The agreement was poor and it seems that no clear relationships exist between effective porosity calculated from laboratory tracer tests and effective porosity estimated from particle-size distributions and soil–water characteristic curves. A field tracer test in a sand-and-gravel aquifer produced a calculated effective porosity of approximately 0.17. By comparison, estimates of effective porosity from textural data, moisture retention, and published values were approximately 50–90% greater than the field calibrated value. Thus, estimation of effective porosity for chemical transport is highly dependent on the chosen transport model and is best obtained by laboratory or field tracer tests.Résumé La porosité effective dans les analyses de transport de soluté est habituellement estimée, plutôt que calculée à partir d'expériences de traçage sur le terrain ou au laboratoire. Les valeurs calculées de la porosité effective au laboratoire sur trois échantillons de textures différentes ont été comparées aux estimations provenant de distributions de taille de particules et de courbes caractéristiques sol-eau. La concordance était plutôt faible et il semble qu'il n'existe aucune relation claire entre la porosité effective calculée à partir des expériences de traçage au laboratoire et la porosité effective estimée à partir des distributions de taille de particules et de courbes caractéristiques sol-eau. Une expérience de traçage de terrain dans un aquifère de sables et de graviers a fourni une porosité effective calculée d'environ 0,17. En comparaison, les estimations de porosité effective de données de texture, de teneur en eau et les valeurs publiées étaient environ 50 à 90% plus fortes que la valeur calibrée sur le terrain. Ainsi, l'estimation de la porosité effective pour le transport en solution dépend fortement du modèle de transport utilisé et est préférable lorsqu'elle est obtenue à partir d'expériences de traçage de laboratoire ou de terrain.Resumen La porosidad efectiva en el análisis del transporte de solutos se suele estimar, en lugar de calcularse a partir de ensayos de trazadores en el campo o el laboratorio. Los valores calculados de la porosidad efectiva en el laboratorio en tres muestras de distintas texturas se compararon con las estimaciones realizadas a partir de las distribuciones de tamaño de partículas y de las curvas características suelo-agua. El ajuste fue bastante pobre y parece que no existe una relación clara entre los valores de la porosidad efectiva calculados mediante los tres métodos. Un ensayo de trazadores en el campo, en un acuífero formado por arenas y gravas, dio lugar a un valor de porosidad efectiva calculado de 0.17. Las estimaciones realizadas a partir de los datos de textura, humedad retenida y valores publicados eran entre un 50–90 por ciento mayores que el valor calibrado en el ensayo de campo. Así, la estimación del valor de la porosidad efectiva para el transporte químico depende mucho del modelo de transporte seleccionado y es mejor si se obtiene a partir de ensayos de laboratorio o de campo.
[1]
L. Luckner,et al.
Migration processes in the soil and groundwater zone
,
1991
.
[2]
D. K. Cassel,et al.
EVALUATION OF SPATIAL DISTRIBUTION OF HYDRAULIC CONDUCTIVITY USING EFFECTIVE POROSITY DATA
,
1989
.
[3]
R. Horton,et al.
Method of estimating the travel time of noninteracting solutes through compacted soil material
,
1987
.
[4]
J. Bear.
Dynamics of Fluids in Porous Media
,
1975
.
[5]
G. Marsily.
Quantitative Hydrogeology: Groundwater Hydrology for Engineers
,
1986
.
[6]
Feike J. Leij,et al.
The RETC code for quantifying the hydraulic functions of unsaturated soils
,
1992
.
[7]
J. Parker.
Analysis of Solute Transport in Column Tracer Studies 1
,
1984
.
[8]
S. H. Boutwell.
Modeling remedial actions at uncontrolled hazardous waste sites
,
1986
.
[9]
A. Zuber,et al.
BOREHOLE DILUTION TECHNIQUES: A CRITICAL REVIEW.
,
1968
.
[10]
A. Corey.
Mechanics of Immiscible Fluids in Porous Media
,
1986
.
[11]
D. Norton,et al.
Transport phenomena in hydrothermal systems: the nature of porosity
,
1977
.
[12]
J. Bear,et al.
Modeling groundwater flow and pollution
,
1987
.
[13]
Jesús Carrera,et al.
An approach to process identification: application to solute transport through clays.
,
1990
.
[14]
Dietmar Klotz,et al.
Point dilution methods of investigating ground water flow by means of radioisotopes
,
1968
.
[15]
W. E. Cronin,et al.
A Method for Estimating Effective Porosity and Ground‐Water Velocity
,
1991
.
[16]
E. Gaspar,et al.
Radioactive tracers in hydrology
,
1972
.
[17]
Darrell I. Leap,et al.
A single‐well tracing method for estimating regional advective velocity in a confined aquifer: Theory and preliminary laboratory verification
,
1988
.
[18]
M. Th. van Genuchten,et al.
Two‐Site/Two‐Region Models for Pesticide Transport and Degradation: Theoretical Development and Analytical Solutions
,
1989
.
[19]
P. Domenico,et al.
Physical and chemical hydrogeology
,
1990
.
[20]
W. F. Merritt,et al.
A fluoride borehole dilution apparatus for groundwater velocity measurements
,
1977
.
[21]
K. Rehfeldt,et al.
Evaluation of closed-form analytical models to calculate conductivity in a fine sand
,
1985
.
[22]
Charles D. Shackelford,et al.
Cumulative Mass Approach for Column Testing
,
1995
.