Realizing Metal-Free Carbene-Catalyzed Carbonylation Reactions with CO.

Many organic and main-group compounds, usually acids or bases, can accelerate chemical reactions when used in substoichiometric quantities, a process known as organocatalysis. In marked contrast, very few of these compounds are able to activate carbon monoxide, and until now, none of them could catalyze its chemical transformation, a classical task for transition metals. Herein we report that a stable singlet ambiphilic carbene activates CO and catalytically promotes the carbonylation of an o-quinone into a cyclic carbonate. These findings pave the way for the discovery of metal-free catalyzed carbonylation reactions.

[1]  Eunsung Lee,et al.  Activation of C–F, Si–F, and S–F Bonds by N-Heterocyclic Carbenes and Their Isoelectronic Analogues , 2020, Synlett.

[2]  P. Schreiner,et al.  A silicon–carbonyl complex stable at room temperature , 2020, Nature Chemistry.

[3]  G. Bertrand,et al.  Cyclic (Alkyl)- and (Aryl)-(amino)carbene Coinage Metal Complexes and Their Applications. , 2020, Chemical reviews.

[4]  L. Cao,et al.  Mesoionic Carbene (MIC)-Catalyzed H/D Exchange at Formyl Groups , 2019, Chem.

[5]  Samuel E. Neale,et al.  Reductive Elimination at Carbon under Steric Control. , 2019, Journal of the American Chemical Society.

[6]  Xiao‐Feng Wu,et al.  The Chemistry of CO: Carbonylation , 2019, Chem.

[7]  Rebecca L. Melen Frontiers in molecular p-block chemistry: From structure to reactivity , 2019, Science.

[8]  H. Braunschweig,et al.  Metallomimetic Chemistry of Boron. , 2019, Chemical reviews.

[9]  G. Bertrand,et al.  1 H-1,2,3-Triazol-5-ylidenes: Readily Available Mesoionic Carbenes. , 2018, Accounts of chemical research.

[10]  Youngmee Kim,et al.  Addition, Substitution, and Ring-Contraction Reactions of Quinones with N-Heterocyclic Carbenes. , 2018, The Journal of organic chemistry.

[11]  Huanfeng Jiang,et al.  Two C-O Bond Formations on a Carbenic Carbon: Palladium-Catalyzed Coupling of N-Tosylhydrazones and Benzo-1,2-quinones To Construct Benzodioxoles. , 2018, Organic letters.

[12]  G. Nikonov,et al.  Oxidative Addition and Reductive Elimination at Main-Group Element Centers. , 2018, Chemical reviews.

[13]  U. Radius,et al.  Reversible Oxidative Addition at Carbon. , 2017, Angewandte Chemie.

[14]  G. Bertrand,et al.  Cyclic (Alkyl)(amino)carbenes (CAACs): Recent Developments. , 2017, Angewandte Chemie.

[15]  U. Radius,et al.  What Wanzlick Did Not Dare To Dream: Cyclic (Alkyl)(amino)carbenes (cAACs) as New Key Players in Transition‐Metal Chemistry , 2017 .

[16]  G. Bertrand,et al.  Bicyclic (Alkyl)(amino)carbenes (BICAACs): Stable Carbenes More Ambiphilic than CAACs. , 2017, Journal of the American Chemical Society.

[17]  U. Radius,et al.  Synthesis and Reactivity of Cyclic (Alkyl)(Amino)Carbene Stabilized Nickel Carbonyl Complexes , 2017 .

[18]  L. Cavallo,et al.  Guidelines To Select the N-Heterocyclic Carbene for the Organopolymerization of Monomers with a Polar Group , 2017 .

[19]  H. Braunschweig,et al.  Main-Group Metallomimetics: Transition Metal-like Photolytic CO Substitution at Boron. , 2017, Journal of the American Chemical Society.

[20]  D. Stephan The broadening reach of frustrated Lewis pair chemistry , 2016, Science.

[21]  G. Bertrand,et al.  Transition-Metal-like Behavior of Main Group Elements: Ligand Exchange at a Phosphinidene. , 2016, Journal of the American Chemical Society.

[22]  U. Radius,et al.  Adduct Formation, B-H Activation and Ring Expansion at Room Temperature from Reactions of HBcat with NHCs. , 2016, Chemistry.

[23]  Z. R. Turner,et al.  Chemically Non-Innocent Cyclic (Alkyl)(Amino)Carbenes: Ligand Rearrangement, C-H and C-F Bond Activation. , 2016, Chemistry.

[24]  U. Radius,et al.  Cyclic (Alkyl)(Amino)Carbene Complexes of Rhodium and Nickel and Their Steric and Electronic Parameters. , 2016, Chemistry.

[25]  C. Bielawski,et al.  N,N'-Diamidocarbenes: Isolable Divalent Carbons with Bona Fide Carbene Reactivity. , 2016, Accounts of chemical research.

[26]  Jeremiah A. Johnson,et al.  Reactions of Persistent Carbenes with Hydrogen-Terminated Silicon Surfaces. , 2016, Journal of the American Chemical Society.

[27]  G. Bertrand,et al.  Singlet (Phosphino)phosphinidenes are Electrophilic. , 2016, Journal of the American Chemical Society.

[28]  H. Roesky,et al.  Cyclic Alkyl(amino) Carbene Stabilized Complexes with Low Coordinate Metals of Enduring Nature. , 2016, Accounts of chemical research.

[29]  C. Bielawski,et al.  Diamidocarbene Induced B–H Activation: A New Class of Initiator-Free Olefin Hydroboration Reagents , 2016 .

[30]  D. Stalke,et al.  Insertion of Cyclic Alkyl(amino) Carbene into the Si-H Bonds of Hydrochlorosilanes. , 2016, Inorganic chemistry.

[31]  C. Bielawski,et al.  An Isolable, Photoswitchable N-Heterocyclic Carbene: On-Demand Reversible Ammonia Activation. , 2015, Angewandte Chemie.

[32]  Rian D. Dewhurst,et al.  Multiple complexation of CO and related ligands to a main-group element , 2015, Nature.

[33]  F. Thomas,et al.  Air-persistent monomeric (amino)(carboxy) radicals derived from cyclic (alkyl)(amino) carbenes. , 2015, Journal of the American Chemical Society.

[34]  T. Rovis,et al.  Organocatalytic Reactions Enabled by N-Heterocyclic Carbenes. , 2015, Chemical reviews.

[35]  G. Bertrand,et al.  Cyclic (alkyl)(amino)carbenes (CAACs): stable carbenes on the rise. , 2015, Accounts of chemical research.

[36]  G. Bertrand,et al.  Synthesis and reactivity of a CAAC-aminoborylene adduct: a hetero-allene or an organoboron isoelectronic with singlet carbenes. , 2014, Angewandte Chemie.

[37]  J. Hein,et al.  Oxidative esterification of aldehydes using mesoionic 1,2,3-triazolyl carbene organocatalysts. , 2014, Organic letters.

[38]  C. Bielawski,et al.  Elucidation of carbene ambiphilicity leading to the discovery of reversible ammonia activation. , 2013, Journal of the American Chemical Society.

[39]  D. Selent,et al.  Carbonylation of the simplest persistent diaminocarbene. , 2013, Chemical communications.

[40]  G. Bertrand,et al.  An air-stable oxyallyl radical cation. , 2013, Angewandte Chemie.

[41]  A. D. Allen,et al.  Ketenes and other cumulenes as reactive intermediates. , 2013, Chemical reviews.

[42]  M. Beller,et al.  Transition Metal Catalyzed Carbonylation Reactions: Carbonylative Activation of C-X Bonds , 2013 .

[43]  Frank Glorius,et al.  Organocatalytic umpolung: N-heterocyclic carbenes and beyond. , 2012, Chemical Society reviews.

[44]  H. Grützmacher,et al.  Phosphination of carbon monoxide: a simple synthesis of sodium phosphaethynolate (NaOCP). , 2011, Angewandte Chemie.

[45]  S. Perrone,et al.  Synthesis of benzo-fused five- and six-membered heterocycles by palladium-catalyzed cyclocarbonylation , 2011 .

[46]  D. Stalke,et al.  Reactions of Stable N-Heterocyclic Silylenes with Ketones and 3,5-Di-tert-butyl-o-benzoquinone , 2011 .

[47]  M. Driess,et al.  Zwitterionic and Donor-Stabilized N-Heterocyclic Silylenes (NHSis) for Metal-Free Activation of Small Molecules , 2011 .

[48]  G. Frenking,et al.  When does carbonylation of carbenes yield ketenes? A theoretical study with implications for synthesis. , 2011, Journal of the American Chemical Society.

[49]  Jason D. Masuda,et al.  Activation of Si-H, B-H, and P-H bonds at a single nonmetal center. , 2010, Angewandte Chemie.

[50]  G. Frenking,et al.  N-heterocyclic carbenes which readily add ammonia, carbon monoxide and other small molecules, , 2010 .

[51]  V. Staroverov,et al.  Reactivity Studies of N-Heterocyclic Carbene Complexes of Germanium(II)† , 2010 .

[52]  C. Bielawski,et al.  Ammonia N-H activation by a N,N'-diamidocarbene. , 2010, Chemical communications.

[53]  P. Power Main-group elements as transition metals , 2010, Nature.

[54]  C. Bielawski,et al.  An N,N'-diamidocarbene: studies in C-H insertion, reversible carbonylation, and transition-metal coordination chemistry. , 2009, Journal of the American Chemical Society.

[55]  G. Bertrand,et al.  Facile Splitting of Hydrogen and Ammonia by Nucleophilic Activation at a Single Carbon Center , 2007, Science.

[56]  G. Bertrand,et al.  CO fixation to stable acyclic and cyclic alkyl amino carbenes: stable amino ketenes with a small HOMO-LUMO gap. , 2006, Angewandte Chemie.

[57]  C. Vonrhein,et al.  The crystal structure of the apoenzyme of the iron-sulphur cluster-free hydrogenase. , 2006, Journal of molecular biology.

[58]  G. Bertrand,et al.  Stable cyclic (alkyl)(amino)carbenes as rigid or flexible, bulky, electron-rich ligands for transition-metal catalysts: a quaternary carbon atom makes the difference. , 2005, Angewandte Chemie.

[59]  H. Willner,et al.  Tris(trifluoromethyl)borane carbonyl, (CF3)3BCO-synthesis, physical, chemical and spectroscopic properties, gas phase, and solid state structure. , 2002, Journal of the American Chemical Society.

[60]  M. Rahman,et al.  Synthesis and Reactions of Bismuthonium Salts and Ylides Bearing an alpha-Ester Group. , 1999, The Journal of organic chemistry.

[61]  Ronald Breslow,et al.  On the Mechanism of Thiamine Action. IV.1 Evidence from Studies on Model Systems , 1958 .