Polyadenylation Linked to Transcription Termination Directs the Processing of snoRNA Precursors in Yeast

[1]  S. Buratowski,et al.  The Nrd1–Nab3–Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain , 2008, Nature Structural &Molecular Biology.

[2]  D. Libri,et al.  Phosphorylation of the RNA polymerase II C-terminal domain dictates transcription termination choice , 2008, Nature Structural &Molecular Biology.

[3]  D. Tollervey,et al.  The mRNA encoding the yeast ARE-binding protein Cth2 is generated by a novel 3′ processing pathway , 2008, Nucleic acids research.

[4]  David Tollervey,et al.  Inactivation of cleavage factor I components Rna14p and Rna15p induces sequestration of small nucleolar ribonucleoproteins at discrete sites in the nucleus. , 2008, Molecular biology of the cell.

[5]  J. Greenblatt,et al.  The Glc7 phosphatase subunit of the cleavage and polyadenylation factor is essential for transcription termination on snoRNA genes. , 2008, Molecular cell.

[6]  G. M. Wilson,et al.  Characterization of the Essential Activities of Saccharomyces cerevisiae Mtr4p, a 3′→5′ Helicase Partner of the Nuclear Exosome* , 2008, Journal of Biological Chemistry.

[7]  S. Buratowski,et al.  Transcription termination and RNA degradation contribute to silencing of RNA polymerase II transcription within heterochromatin. , 2008, Molecular cell.

[8]  D. Tollervey,et al.  Trf4 targets ncRNAs from telomeric and rDNA spacer regions and functions in rDNA copy number control , 2007, The EMBO journal.

[9]  David Tollervey,et al.  Depletion of the Yeast Nuclear Exosome Subunit Rrp6 Results in Accumulation of Polyadenylated RNAs in a Discrete Domain within the Nucleolus , 2007, Molecular and Cellular Biology.

[10]  R. Ghirlando,et al.  Interaction of yeast RNA-binding proteins Nrd1 and Nab3 with RNA polymerase II terminator elements. , 2007, RNA.

[11]  B. Séraphin,et al.  A single subunit, Dis3, is essentially responsible for yeast exosome core activity , 2007, Nature Structural &Molecular Biology.

[12]  O. Rando,et al.  Distinct pathways for snoRNA and mRNA termination. , 2006, Molecular cell.

[13]  J. Corden,et al.  Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. , 2006, Molecular cell.

[14]  D. Libri,et al.  Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. , 2006, Molecular cell.

[15]  D. Tollervey,et al.  Surveillance of nuclear‐restricted pre‐ribosomes within a subnucleolar region of Saccharomyces cerevisiae , 2006, The EMBO journal.

[16]  Sarah Ng,et al.  cis- and trans-Acting Determinants of Transcription Termination by Yeast RNA Polymerase II , 2006, Molecular and Cellular Biology.

[17]  J. Corden,et al.  Regulation of yeast NRD1 expression by premature transcription termination. , 2006, Molecular cell.

[18]  JamesC . Anderson,et al.  Nuclear RNA surveillance in Saccharomyces cerevisiae: Trf4p-dependent polyadenylation of nascent hypomethylated tRNA and an aberrant form of 5S rRNA. , 2006, RNA.

[19]  M. Ares,et al.  Accumulation of unstable promoter-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in Saccharomyces cerevisiae. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[20]  D. Tollervey,et al.  Yeast Trf5p is a nuclear poly(A) polymerase , 2006, EMBO reports.

[21]  S. Buratowski,et al.  Nrd1 interacts with the nuclear exosome for 3' processing of RNA polymerase II transcripts. , 2006, Molecular cell.

[22]  G. Chanfreau,et al.  Contributions of Trf4p- and Trf5p-dependent polyadenylation to the processing and degradative functions of the yeast nuclear exosome. , 2006, RNA.

[23]  D. Tollervey,et al.  A Nuclear Surveillance Pathway for mRNAs with Defective Polyadenylation , 2005, Molecular and Cellular Biology.

[24]  David M. Mauger,et al.  A Requirement for the Saccharomyces cerevisiae Paf1 complex in snoRNA 3' end formation. , 2005, Molecular cell.

[25]  E. Petfalski,et al.  RNA Degradation by the Exosome Is Promoted by a Nuclear Polyadenylation Complex , 2005, Cell.

[26]  B. Séraphin,et al.  Cryptic Pol II Transcripts Are Degraded by a Nuclear Quality Control Pathway Involving a New Poly(A) Polymerase , 2005, Cell.

[27]  W. Keller,et al.  A New Yeast Poly(A) Polymerase Complex Involved in RNA Quality Control , 2005, PLoS biology.

[28]  I. Bozzoni,et al.  Coupling between snoRNP assembly and 3′ processing controls box C/D snoRNA biosynthesis in yeast , 2004, The EMBO journal.

[29]  W. Keller,et al.  Functions for S. cerevisiae Swd2p in 3' end formation of specific mRNAs and snoRNAs and global histone 3 lysine 4 methylation. , 2004, RNA.

[30]  Alan G Hinnebusch,et al.  Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. , 2004, Genes & development.

[31]  C. Moore,et al.  The Essential WD Repeat Protein Swd2 Has Dual Functions in RNA Polymerase II Transcription Termination and Lysine 4 Methylation of Histone H3 , 2004, Molecular and Cellular Biology.

[32]  M. Mann,et al.  Rrp47p Is an Exosome-Associated Protein Required for the 3′ Processing of Stable RNAs , 2003, Molecular and Cellular Biology.

[33]  D. Brow,et al.  Ssu72 Protein Mediates Both Poly(A)-Coupled and Poly(A)-Independent Termination of RNA Polymerase II Transcription , 2003, Molecular and Cellular Biology.

[34]  T. Hughes,et al.  Organization and Function of APT, a Subcomplex of the Yeast Cleavage and Polyadenylation Factor Involved in the Formation of mRNA and Small Nucleolar RNA 3′-Ends* , 2003, Journal of Biological Chemistry.

[35]  Lionel Minvielle-Sebastia,et al.  Pti1p and Ref2p found in association with the mRNA 3′ end formation complex direct snoRNA maturation , 2003, The EMBO journal.

[36]  Frédéric Devaux,et al.  Ssu72 is a phosphatase essential for transcription termination of snoRNAs and specific mRNAs in yeast , 2003, The EMBO journal.

[37]  D. Tollervey,et al.  Processing of 3'-extended read-through transcripts by the exosome can generate functional mRNAs. , 2002, Molecular cell.

[38]  T. Kiss Small Nucleolar RNAs An Abundant Group of Noncoding RNAs with Diverse Cellular Functions , 2002, Cell.

[39]  A. Fatica,et al.  Functional Analysis of Yeast snoRNA and snRNA 3′-End Formation Mediated by Uncoupling of Cleavage and Polyadenylation , 2002, Molecular and Cellular Biology.

[40]  M. Rosbash,et al.  Quality control of mRNA 3′-end processing is linked to the nuclear exosome , 2001, Nature.

[41]  D. Brow,et al.  RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts , 2001, Nature.

[42]  B. Séraphin,et al.  The tandem affinity purification (TAP) method: a general procedure of protein complex purification. , 2001, Methods.

[43]  A. Fatica,et al.  Yeast snoRNA accumulation relies on a cleavage‐dependent/polyadenylation‐independent 3′‐processing apparatus , 2000, The EMBO journal.

[44]  D. Tollervey,et al.  Synthesis and Assembly of the Box C+D Small Nucleolar RNPs , 2000, Molecular and Cellular Biology.

[45]  M. Swanson,et al.  A yeast heterogeneous nuclear ribonucleoprotein complex associated with RNA polymerase II. , 2000, Genetics.

[46]  R. Parker,et al.  Yeast Exosome Mutants Accumulate 3′-Extended Polyadenylated Forms of U4 Small Nuclear RNA and Small Nucleolar RNAs , 2000, Molecular and Cellular Biology.

[47]  M. Christman,et al.  Pol kappa: A DNA polymerase required for sister chromatid cohesion. , 2000, Science.

[48]  P. Mitchell,et al.  Functions of the exosome in rRNA, snoRNA and snRNA synthesis , 1999, The EMBO journal.

[49]  B. Séraphin,et al.  A generic protein purification method for protein complex characterization and proteome exploration , 1999, Nature Biotechnology.

[50]  M. Ares,et al.  Depletion of yeast RNase III blocks correct U2 3′ end formation and results in polyadenylated but functional U2 snRNA , 1998, The EMBO journal.

[51]  P. Philippsen,et al.  Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae , 1998, Yeast.

[52]  L. Minvielle-Sebastia,et al.  Coupling termination of transcription to messenger RNA maturation in yeast. , 1998, Science.

[53]  L. Minvielle-Sebastia,et al.  RNA14 and RNA15 proteins as components of a yeast pre-mRNA 3'-end processing factor. , 1994, Science.

[54]  J. Swedlow,et al.  Characterization of nuclear polyadenylated RNA-binding proteins in Saccharomyces cerevisiae , 1994, The Journal of cell biology.

[55]  O. Ozier-Kalogeropoulos,et al.  A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. , 1993, Nucleic acids research.

[56]  M. Swanson,et al.  NAB2: a yeast nuclear polyadenylated RNA-binding protein essential for cell viability , 1993, Molecular and cellular biology.

[57]  D. Tollervey,et al.  Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly , 1993, Cell.

[58]  R. Schiestl,et al.  Improved method for high efficiency transformation of intact yeast cells. , 1992, Nucleic acids research.

[59]  T. A. Brown,et al.  A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. , 1990, Nucleic acids research.

[60]  R. Sikorski,et al.  A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. , 1989, Genetics.

[61]  D. Tollervey,et al.  Fungal small nuclear ribonucleoproteins share properties with plant and vertebrate U‐snRNPs. , 1987, The EMBO journal.

[62]  H. O. Madsen,et al.  Molecular cloning of mouse PSP mRNA , 1985, Nucleic Acids Res..