A class of risk neutral densities with heavy tails
暂无分享,去创建一个
[1] O. Barndorff-Nielsen. Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling , 1997 .
[2] B. Dumas,et al. Implied volatility functions: empirical tests , 1996, IEEE Conference on Computational Intelligence for Financial Engineering & Economics.
[3] M. Schweizer. Approximation pricing and the variance-optimal martingale measure , 1996 .
[4] Victor Isakov,et al. The inverse problem of option pricing , 1997 .
[5] M. Rubinstein.. Implied Binomial Trees , 1994 .
[6] A. Bensoussan. On the theory of option pricing , 1984, Acta Applicandae Mathematicae.
[7] E. Eberlein,et al. Hyperbolic distributions in finance , 1995 .
[8] V. Isakov,et al. TOPICAL REVIEW: Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets , 1999 .
[9] Tina Hviid Rydberg. Generalized Hyperbolic Diffusion Processes with Applications in Finance , 1999 .
[10] Ole E. Barndorff-Nielsen,et al. Processes of normal inverse Gaussian type , 1997, Finance Stochastics.