Flipping the Substrate Creates a Highly Selective Halohydrin Dehalogenase for the Synthesis of Chiral 4-Aryl-2-oxazolidinones from Readily Available Epoxides

[1]  Nanwei Wan,et al.  Biocatalytic Thionation of Epoxides for Enantioselective Synthesis of Thiiranes. , 2022, Angewandte Chemie.

[2]  A. Schallmey,et al.  G‐type Halohydrin Dehalogenases Catalyze Ring Opening Reactions of Cyclic Epoxides with Diverse Anionic Nucleophiles , 2022, Chemistry.

[3]  Yuguo Zheng,et al.  Identification and Structure Analysis of an Unusual Halohydrin Dehalogenase for Highly Chemo-, Regio- and Enantioselective Bio-Nitration of Epoxides. , 2022, Angewandte Chemie.

[4]  F. Verpoort,et al.  Tandem Reactions Based on the Cyclization of Carbon Dioxide and Propargylic Alcohols: Derivative Applications of α-Alkylidene Carbonates , 2022, Catalysts.

[5]  Nanwei Wan,et al.  Stereoselective Synthesis of Enantiopure Oxazolidinones via Biocatalytic Asymmetric Aminohydroxylation of Alkenes , 2021, Advanced Synthesis & Catalysis.

[6]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[7]  E. Meggers,et al.  Catalytic enantioselective synthesis of β-amino alcohols by nitrene insertion , 2020, Science China Chemistry.

[8]  Xumu Zhang,et al.  Efficient Access to Chiral 2-Oxazolidinones via Ni-Catalyzed Asymmetric Hydrogenation: Scope Study, Mechanistic Explanation, and Origin of Enantioselectivity , 2020 .

[9]  E. Meggers,et al.  Asymmetric catalysis with a chiral-at-osmium complex. , 2020, Chemical communications.

[10]  Jiawei Tian,et al.  Synthesis of Chiral 5‐Aryl‐2‐oxazolidinones via Halohydrin Dehalogenase‐Catalyzed Enantio‐ and Regioselective Ring‐Opening of Styrene Oxides , 2020 .

[11]  Jiawei Tian,et al.  Regioselective Ring‐Opening of Styrene Oxide Derivatives Using Halohydrin Dehalogenase for Synthesis of 4‐Aryloxazolidinones , 2019, Advanced Synthesis & Catalysis.

[12]  S. MacMillan,et al.  β-Amino Phosphine Mn Catalysts for 1,4-Transfer Hydrogenation of Chalcones and Allylic Alcohol Isomerization , 2019, Organometallics.

[13]  Wanyi Liu,et al.  Highly α-position regioselective ring-opening of epoxides catalyzed by halohydrin dehalogenase from Ilumatobacter coccineus: a biocatalytic approach to 2-azido-2-aryl-1-ols , 2019, RSC advances.

[14]  Michael R. Wierzbicki,et al.  Single‐Dose Zoliflodacin (ETX0914) for Treatment of Urogenital Gonorrhea , 2018, New England Journal of Medicine.

[15]  S. Hashemian,et al.  Linezolid: a review of its properties, function, and use in critical care , 2018, Drug design, development and therapy.

[16]  Hyunsoo Han,et al.  Highly Stereoselective 2-Oxonia-Cope Rearrangement: A Platform Enabling At-Will Control of Regio-, Enantio-, and Diastereoselectivity in the Vinylogous Aldol Reactions of Aldehydes. , 2018, Organic letters.

[17]  H. Suga,et al.  Tetraarylphosphonium Salt-Catalyzed Synthesis of Oxazolidinones from Isocyanates and Epoxides. , 2017, Organic letters.

[18]  Anett Schallmey,et al.  HheG, a Halohydrin Dehalogenase with Activity on Cyclic Epoxides , 2017 .

[19]  M. Schallmey,et al.  Recent advances on halohydrin dehalogenases—from enzyme identification to novel biocatalytic applications , 2016, Applied Microbiology and Biotechnology.

[20]  Qingli Wang,et al.  New synthetic strategy for chiral 2-oxazolidinones derivatives via rhodium-catalyzed asymmetric hydrogenation , 2016 .

[21]  M. Schallmey,et al.  Expanding the Halohydrin Dehalogenase Enzyme Family: Identification of Novel Enzymes by Database Mining , 2014, Applied and Environmental Microbiology.

[22]  T. Ceska,et al.  Binding Mode and Structure–Activity Relationships around Direct Inhibitors of the Nrf2–Keap1 Complex , 2014, ChemMedChem.

[23]  S. Grau,et al.  Potential role of tedizolid phosphate in the treatment of acute bacterial skin infections , 2013, Drug design, development and therapy.

[24]  M. North,et al.  Bimetallic Aluminum(salen) Catalyzed Synthesis of Oxazolidinones from Epoxides and Isocyanates , 2013 .

[25]  K. Houk,et al.  Catalytic, enantioselective N-acylation of lactams and thiolactams using amidine-based catalysts. , 2012, Journal of the American Chemical Society.

[26]  Antonín Pavelka,et al.  CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures , 2012, PLoS Comput. Biol..

[27]  Luis Muñoz,et al.  Carbon dioxide as a carbonylating agent in the synthesis of 2-oxazolidinones, 2-oxazinones, and cyclic ureas: scope and limitations. , 2010, The Journal of organic chemistry.

[28]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[29]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[30]  B. Iglesias,et al.  Carbonylation with CO2 andPhosphorus Electrophiles: A Convenient Method for the Synthesisof 2-Oxazolidinones from 1,2-Amino Alcohols , 2009 .

[31]  D. Janssen,et al.  Formation of enantiopure 5-substituted oxazolidinones through enzyme-catalysed kinetic resolution of epoxides. , 2008, Organic letters.

[32]  Hui Jiang,et al.  Kinetic resolution of 2-oxazolidinones via catalytic, enantioselective N-acylation. , 2006, Journal of the American Chemical Society.

[33]  J. Mayoral,et al.  The role of binding constants in the efficiency of chiral catalysts immobilized by electrostatic interactions: the case of azabis(oxazoline)-copper complexes. , 2004, Chemistry.

[34]  B. Gabriele,et al.  An improved procedure for the palladium-catalyzed oxidative carbonylation of beta-amino alcohols to oxazolidin-2-ones. , 2003, The Journal of organic chemistry.

[35]  A. Gennaro,et al.  Synthesis of chiral oxazolidin-2-ones by 1,2-amino alcohols, carbon dioxide and electrogenerated acetonitrile anion , 2002 .

[36]  M. Feroci,et al.  Palladium-catalyzed electrochemical carbonylation of 2-amino-1-alkanols to oxazolidin-2-ones under very mild conditions , 2001 .

[37]  Yikang Wu,et al.  A high-yielding low-cost facile synthesis of 2-oxazolidinones chiral auxiliaries , 2000 .

[38]  Sotgiu,et al.  The reaction of 1,2-amino alcohols with carbon dioxide in the presence of 2-pyrrolidone electrogenerated base. New synthesis of chiral oxazolidin-2-ones , 2000, The Journal of organic chemistry.

[39]  M. Crimmins,et al.  An Asymmetric Aldol−Ring-Closing Metathesis Strategy for the Enantioselective Construction of Oxygen Heterocycles: An Efficient Approach to the Enantioselective Synthesis of (+)-Laurencin , 1999 .

[40]  N. Lewis,et al.  A Simple and Efficient Procedure for the Preparation of Chiral 2-Oxazolidinones from α-Amino Acids , 1995 .

[41]  I. Watanabe,et al.  Cloning of two halohydrin hydrogen-halide-lyase genes of Corynebacterium sp. strain N-1074 and structural comparison of the genes and gene products. , 1994, Bioscience, biotechnology, and biochemistry.

[42]  J. Gage,et al.  Total synthesis of (+)-calyculin A , 1992 .

[43]  B. Alexander,et al.  Single-pot reductive conversion of amino acids to their respective 2-oxazolidinones employing trichloromethyl chloroformate as the acylating agent: a multigram synthesis , 1989 .

[44]  K. Nicolaou,et al.  A practical and enantioselective synthesis of glycosphingolipids and related compounds. Total synthesis of globotriaosylceramide (Gb3) , 1988 .

[45]  D. Evans,et al.  Enantioselective aldol condensations. 2. Erythro-selective chiral aldol condensations via boron enolates , 1981 .

[46]  OUP accepted manuscript , 2021, Nucleic Acids Research.

[47]  R. Jones,et al.  Oxazolidinones: a review. , 2000, Drugs.

[48]  Dunming Zhu,et al.  A facile synthesis of oxazolidinones via lanthanide-catalyzed cycloaddition of epoxides with isocyanates , 1994 .

[49]  V. Hruby,et al.  Asymmetric 1,4-addition of organocuprates to chiral .alpha.,.beta.-unsaturated N-acyl-4-phenyl-2-oxazolidinones: a new approach to the synthesis of chiral .beta.-branched carboxylic acids , 1993 .