Dissimilarity cumulation theory in smoothly connected spaces

Abstract This is the third paper in the series introducing the Dissimilarity Cumulation theory and its main psychological application, Universal Fechnerian Scaling. The previously developed dissimilarity-based theory of path length is used to construct the notion of a smooth path, defined by the property that the ratio of the dissimilarity between its points to the length of the subtended fragment of the path tends to unity as the points get closer to each other. We consider a class of stimulus spaces in which for every path there is a series of piecewise smooth paths converging to it pointwise and in length; and a subclass of such spaces where any two sufficiently close points can be connected by a smooth “geodesic in the small”. These notions are used to construct a broadly understood Finslerian geometry of stimulus spaces representable by regions of Euclidean n -spaces. With an additional assumption of comeasurability in the small between the canonical psychometric increments of the first and second kind, this establishes a link between Universal Fechnerian Scaling and Multidimensional Fechnerian Scaling in Euclidean n -spaces. The latter was a starting point for our theoretical program generalizing Fechner’s idea that sensation magnitudes can be computed by integration of a local discriminability measure.

[1]  Jun Zhang,et al.  Dual scaling of comparison and reference stimuli in multi-dimensional psychological space , 2004 .

[2]  Ehtibar N. Dzhafarov,et al.  Multidimensional Fechnerian Scaling: Basics. , 2001, Journal of mathematical psychology.

[3]  C. D. Creelman Empirical Detectability Scales without the JND , 1967, Perceptual and motor skills.

[4]  E. Dzhafarov Multidimensional fechnerian scaling: probability-distance hypothesis , 2002 .

[5]  G. Iverson Analytical methods in the theory of psychophysical discrimination I: Inequalities, convexity and integration of just noticeable differences , 2006 .

[6]  Psychophysics without physics: extension of Fechnerian scaling from continuous to discrete and discrete-continuous stimulus spaces , 2005 .

[7]  Ehtibar N. Dzhafarov Multidimensional fechnerian scaling: perceptual separability , 2002 .

[8]  Ehtibar N. Dzhafarov,et al.  Regular Minimality: A Fundamental Law of Discrimination. , 2006 .

[9]  H. Colonius,et al.  Reconstructing Distances among Objects from Their Discriminability , 2006, Psychometrika.

[10]  J. Falmagne The generalized Fechner problem and discrimination , 1971 .

[11]  J. Cohen,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulas , 1968 .

[12]  Multidimensional Fechnerian scaling: regular variation version , 2002 .

[13]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[14]  D. Krantz Integration of just-noticeable differences , 1971 .

[15]  A. Bruckner,et al.  Differentiation of real functions , 1978 .

[16]  Ehtibar N. Dzhafarov,et al.  Dissimilarity cumulation theory and subjective metrics , 2007 .

[17]  Herbert Busemann,et al.  The geometry of geodesics , 1955 .

[18]  Zhongmin Shen,et al.  Lectures on Finsler Geometry , 2001 .

[19]  N. Smelser,et al.  International Encyclopedia of the Social and Behavioral Sciences , 2001 .

[20]  L. M. Blumenthal,et al.  Studies in geometry , 1972 .

[21]  H. Colonius,et al.  Fechnerian metrics in unidimensional and multidimensional stimulus spaces , 1999, Psychonomic bulletin & review.

[22]  Tarow Indow Metrics in Color Spaces: Im Kleinen und im Großen , 1994 .

[23]  E. Dzhafarov Dissimilarity cumulation theory in arc-connected spaces , 2008 .

[24]  Gerhard H. Fischer,et al.  "Contributions to Mathematical Psychology, Psychometrics, and Methodology" , 1993 .

[25]  Über die stochastische Fundierung des psychophysischen Gesetzes , 1962 .

[26]  Multidimensional Fechnerian scaling: pairwise comparisons, regular minimality, and nonconstant self-similarity , 2002 .

[27]  H. Busemann The geometry of Finsler spaces , 1950 .

[28]  H. Colonius,et al.  Psychophysics without physics: a purely psychological theory of Fechnerian scaling in continuous stimulus spaces , 2005 .

[29]  Leonard M. Blumenthal,et al.  Theory and applications of distance geometry , 1954 .

[30]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[31]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[32]  E. Dzhafarov On the law of Regular Minimality: Reply to Ennis , 2006 .

[33]  D. Patterson Sources of Color Science , 2008 .