On injectivity in locally presentable categories

AbstractWe show that some fundamental results about projectivity classes, weakly coreflective subcate-gories and cotorsion theories can be generalized from R -modules to arbitrary locally presentablecategories.  2004 Elsevier Inc. All rights reserved. 1. IntroductionInjectivity in locally presentable categories is well understood(see [2]). The basic resultis that a full subcategory A of a locally presentable category K is a small-injectivity class(i.e., there is a set M of morphisms of K such that A consists of all objects injective w.r.t.each morphism in M ) if and only if A is accessible and closed in K under products and λ -directed colimits for some regular cardinal λ . Accessibility of A can be replaced by A beingalsoclosed under λ -puresubobjects.Here, λ -puresubobjectsare precisely λ -directedcolimits of split subobjects. This result was re-proved for additive locally presentablecategories by H. Krause [13]. Injectivity classes are closely related to weakly reflectivesubcategories. Every small-injectivity class of a locally presentable category

[1]  J. Adámek,et al.  Locally Presentable and Accessible Categories: Bibliography , 1994 .

[2]  C. Lair Catégories modelables et catégories esquissables , 1981 .

[3]  László Fuchs,et al.  Infinite Abelian groups , 1970 .

[4]  Bernhard Banaschewski,et al.  Categorical characterization of the MacNeille completion , 1967 .

[5]  P. Gabriel,et al.  Lokal α-präsentierbare Kategorien , 1971 .

[6]  Michael Makkai,et al.  A Theorem on Barr-Exact Categories, with an Infinitary Generalization , 1990, Ann. Pure Appl. Log..

[7]  G. Kelly A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on , 1980, Bulletin of the Australian Mathematical Society.

[8]  E. Enochs Injective and flat covers, envelopes and resolvents , 1981 .

[9]  W. Tholen Injective objects and cogenerating sets , 1981 .

[10]  REFLECTORS AS COMPOSITIONS OF EPI-REFLECTORS , 1969 .

[11]  M. Auslander,et al.  Preprojective modules over artin algebras , 1980 .

[12]  Yves Diers Catégories Localement Multiprésentables , 1980 .

[13]  G. M. Kelly,et al.  Categories of continuous functors, I , 1972 .

[14]  G. Herden,et al.  Arbitrary torsion classes of abelian groups , 1983 .

[15]  Akihiro Kanamori,et al.  Strong axioms of infinity and elementary embeddings , 1978 .

[16]  Douglas Harris The Wallman compactification as a functor , 1971 .

[17]  Joaquín Pascual,et al.  Infinite Abelian Groups , 1970 .

[18]  Joachim Schröder The category of Urysohn spaces is not cowellpowered , 1983 .

[19]  Jiří Adámek,et al.  Unexpected properties of locally presentable categories , 1990 .

[20]  Michael Makkai,et al.  Accessible categories: The foundations of categorical model theory, , 2007 .

[21]  Jiří Adámek,et al.  Intersections of reflective subcategories , 1988 .

[22]  W. Comfort Small spaces which “generate” large spaces , 1988 .

[23]  R. Guitart,et al.  Calcul syntaxique des modèles et calcul des formules internes , 1980 .

[24]  Sabah Fakir,et al.  Objets algébriquement clos et injectifs dans les catégories localement présentables , 1975 .

[25]  Jiří Adámek,et al.  Are all limit-closed subcategories of locally presentable categories reflective? , 1988 .

[26]  Václav Koubek,et al.  CATEGORICAL CONSTRUCTIONS OF FREE ALGEBRAS, COLIMITS, AND COMPLETIONS OF PARTIAL ALGEBRAS , 1979 .

[27]  Václav Koubek,et al.  Least Fixed Point of a Functor , 1979, J. Comput. Syst. Sci..