On Leray's problem for almost periodic flows

We prove existence and uniqueness for fully-developed (Poiseuille-type) flows in semi-infinite cylinders, in the setting of (time) almost-periodic functions. In the case of Stepanov almost-periodic functions the proof is based on a detailed variational analysis of a linear "inverse" problem, while in the Besicovitch setting the proof follows by a precise analysis in wave-numbers. Next, we use our results to construct a unique almost periodic solution to the so called "Leray's problem" concerning 3D fluid motion in two semi-infinite cylinders connected by a bounded reservoir. In the case of Stepanov functions we need a natural restriction on the size of the flux, while for Besicovitch solutions certain limitations on the generalized Fourier coefficients are requested.

[1]  A. Quarteroni Mathematical Modelling of the Cardiovascular System , 2003, math/0305015.

[2]  H. BeiraoDaVeiga Concerning time-periodic solutions of the Navier-Stokes equations in cylindrical domains under the Navier boundary conditions , 2006 .

[3]  K. Pileckas Chapter 8 - The Navier–Stokes System in Domains with Cylindrical Outlets to Infinity. Leray's Problem , 2007 .

[4]  K. Pileckas Existence of Solutions with the Prescribed Flux of the Navier–Stokes System in an Infinite Cylinder , 2006 .

[5]  Y. Giga,et al.  Global solvability of the Navier-Stokes equations in spaces based on sum-closed frequency sets , 2007, Advances in Differential Equations.

[6]  Alexander Pankov,et al.  Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations , 1990 .

[7]  G. Galdi An Introduction to the Mathematical Theory of the Navier-Stokes Equations : Volume I: Linearised Steady Problems , 1994 .

[8]  Embedding Theorems for Sobolev-Besicovitch Spaces of Almost Periodic Functions , 1998 .

[9]  C. Amick Steady solutions of the Navier-Stokes equations in unbounded channels and pipes , 1977 .

[10]  N. Lloyd,et al.  ALMOST PERIODIC FUNCTIONS AND DIFFERENTIAL EQUATIONS , 1984 .

[11]  Essais dans l'étude des solutions des équations de Navier-Stokes dans l'espace. L'unicité et la presque-périodicité des solutions « petites » , 1962 .

[12]  C. Foiaș,et al.  Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$ , 1967 .

[13]  Y. Giga,et al.  The Cauchy problem for the Navier-Stokes equations with spatially almost periodic initial data , 2009 .

[14]  Giovanni P. Galdi,et al.  The Relation Between Flow Rate and Axial Pressure Gradient for Time-Periodic Poiseuille Flow in a Pipe , 2005 .

[15]  O. A. Ladyzhenskaia Solution “in the large” of the nonstationary boundary value problem for the Navier‐Stokes system with two space variables , 1959 .

[16]  Giovanni P. Galdi,et al.  On the unsteady Poiseuille flow in a pipe , 2007 .

[17]  H. Beirão Veiga,et al.  Erratum to: Time-Periodic Solutions of the Navier-Stokes Equations in Unbounded Cylindrical Domains – Leray’s Problem for Periodic Flows , 2005 .

[18]  Constantin Corduneanu,et al.  Almost periodic functions , 1968 .

[19]  N. Masmoudi,et al.  Relevance of the Slip Condition for Fluid Flows Near an Irregular Boundary , 2010 .

[20]  Luigi Amerio,et al.  Almost-periodic functions and functional equations , 1971 .

[21]  R. Temam Navier-Stokes Equations , 1977 .

[22]  Y. Giga,et al.  On time analyticity of the Navier-Stokes equations in a rotating frame with spatially almost periodic data , 2008 .

[23]  A. Besicovitch Almost Periodic Functions , 1954 .

[24]  Renjun Duan,et al.  Optimal Decay Estimates on the Linearized Boltzmann Equation with Time Dependent Force and their Applications , 2007 .