The ASAS-SN Catalog of Variable Stars II: Uniform Classification of 412,000 Known Variables

The variable stars in the VSX catalog are derived from a multitude of inhomogeneous data sources and classification tools. This inhomogeneity complicates our understanding of variable star types, statistics, and properties, and it directly affects attempts to build training sets for current (and next) generation all-sky, time-domain surveys. We homogeneously analyze the ASAS-SN V-band light curves of ${\sim}412,000$ variables from the VSX catalog. The variables are classified using an updated random forest classifier with an $F_1$ score of 99.4% and refinement criteria for individual classifications. We have derived periods for ${\sim}44,000$ variables in the VSX catalog that lack a period, and have reclassified ${\sim} 17,000$ sources into new broad variability groups with high confidence. We have also reclassified ${\sim} 94,000$ known variables with miscellaneous/generic classifications. The light curves, classifications, and a range of properties of the variables are all available through the ASAS-SN variable stars database (this https URL). We also include the V-band light curves for a set of ${\sim}4,000$ rare variables and transient sources, including cataclysmic variables, symbiotic binaries and flare stars.

[1]  M. J. Lehner,et al.  The MACHO Project LMC Microlensing Results from the First Two Years and the Nature of the Galactic Dark Halo , 1996 .

[2]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[3]  F. V. Leeuwen,et al.  AGB variables and the Mira period–luminosity relation , 2008, 0801.4465.

[4]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[5]  Duane W. Hamacher,et al.  Observations of red-giant variable stars by Aboriginal Australians , 2017, 1709.04634.

[6]  G. Pojmański,et al.  Eclipsing binaries in the All Sky Automated Survey catalogue , 2006 .

[7]  J. Prieto,et al.  An all-sky search for R Coronae Borealis stars in ASAS-SN , 2018, Monthly Notices of the Royal Astronomical Society.

[8]  Ciro Donalek,et al.  A comparison of period finding algorithms , 2013, 1307.2209.

[9]  C. Kochanek,et al.  A GLOBAL PHYSICAL MODEL FOR CEPHEIDS , 2011, 1112.3038.

[10]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[11]  D. Bersier,et al.  The ASAS-SN Bright Supernova Catalog – II. 2015 , 2016, 1704.02320.

[12]  R. H. Kent,et al.  The Mean Square Successive Difference , 1941 .

[13]  B. F. Madore,et al.  The period-luminosity relation. IV. Intrinsic relations and reddenings for the Large Magellanic Cloud Cepheids. , 1982 .

[14]  Toshihiko Tanabe,et al.  The period–luminosity relation for type II Cepheids in globular clusters , 2006, astro-ph/0606609.

[15]  G. Roth An Historical Exploration of Modern Astronomy , 2009 .

[16]  V. Belokurov,et al.  Age gradients throughout the Galaxy with long-period variables , 2018, Monthly Notices of the Royal Astronomical Society.

[17]  J. Richards,et al.  ON MACHINE-LEARNED CLASSIFICATION OF VARIABLE STARS WITH SPARSE AND NOISY TIME-SERIES DATA , 2011, 1101.1959.

[18]  R. Kudritzki,et al.  THE ARAUCARIA PROJECT. THE DISTANCE TO THE SMALL MAGELLANIC CLOUD FROM LATE-TYPE ECLIPSING BINARIES , 2013, 1311.2340.

[19]  X. Koenig,et al.  A CLASSIFICATION SCHEME FOR YOUNG STELLAR OBJECTS USING THE WIDE-FIELD INFRARED SURVEY EXPLORER AllWISE CATALOG: REVEALING LOW-DENSITY STAR FORMATION IN THE OUTER GALAXY , 2014, 1407.2262.

[20]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[21]  K. Wright Research notes , 2003, Nature Biotechnology.

[22]  J. Prieto,et al.  The ASAS-SN catalogue of variable stars I: The Serendipitous Survey , 2018, 1803.01001.

[23]  Astrophysics,et al.  An investigation of the photometric variability of confirmed and candidate Galactic Be stars using ASAS-3 data , 2018, 1805.07665.

[24]  R. Kudritzki,et al.  An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent , 2013, Nature.

[25]  R. Grijs,et al.  Optical–Mid-infrared Period–Luminosity Relations for W UMa-type Contact Binaries Based on Gaia DR 1: 8% Distance Accuracy , 2018, The Astrophysical Journal.