The ASAS-SN Catalog of Variable Stars II: Uniform Classification of 412,000 Known Variables
暂无分享,去创建一个
T Jayasinghe | J. Prieto | C. Kochanek | T. Holoien | B. Shappee | K. Stanek | S. Dong | G. Pojmański | T. Jayasinghe | T. Thompson | M. Pawlak | J. Shields | S. Otero | C. Britt | D. Will | O. Pejcha | Subo Dong | K Z Stanek | T W-S Holoien | C S Kochanek | B J Shappee | J L Prieto | Todd A Thompson | M Pawlak | O Pejcha | J V Shields | G Pojmanski | S Otero | C A Britt | D Will
[1] M. J. Lehner,et al. The MACHO Project LMC Microlensing Results from the First Two Years and the Nature of the Galactic Dark Halo , 1996 .
[2] R. Lupton,et al. A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.
[3] F. V. Leeuwen,et al. AGB variables and the Mira period–luminosity relation , 2008, 0801.4465.
[4] J. Scargle. Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .
[5] Duane W. Hamacher,et al. Observations of red-giant variable stars by Aboriginal Australians , 2017, 1709.04634.
[6] G. Pojmański,et al. Eclipsing binaries in the All Sky Automated Survey catalogue , 2006 .
[7] J. Prieto,et al. An all-sky search for R Coronae Borealis stars in ASAS-SN , 2018, Monthly Notices of the Royal Astronomical Society.
[8] Ciro Donalek,et al. A comparison of period finding algorithms , 2013, 1307.2209.
[9] C. Kochanek,et al. A GLOBAL PHYSICAL MODEL FOR CEPHEIDS , 2011, 1112.3038.
[10] J. Prieto,et al. THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.
[11] D. Bersier,et al. The ASAS-SN Bright Supernova Catalog – II. 2015 , 2016, 1704.02320.
[12] R. H. Kent,et al. The Mean Square Successive Difference , 1941 .
[13] B. F. Madore,et al. The period-luminosity relation. IV. Intrinsic relations and reddenings for the Large Magellanic Cloud Cepheids. , 1982 .
[14] Toshihiko Tanabe,et al. The period–luminosity relation for type II Cepheids in globular clusters , 2006, astro-ph/0606609.
[15] G. Roth. An Historical Exploration of Modern Astronomy , 2009 .
[16] V. Belokurov,et al. Age gradients throughout the Galaxy with long-period variables , 2018, Monthly Notices of the Royal Astronomical Society.
[17] J. Richards,et al. ON MACHINE-LEARNED CLASSIFICATION OF VARIABLE STARS WITH SPARSE AND NOISY TIME-SERIES DATA , 2011, 1101.1959.
[18] R. Kudritzki,et al. THE ARAUCARIA PROJECT. THE DISTANCE TO THE SMALL MAGELLANIC CLOUD FROM LATE-TYPE ECLIPSING BINARIES , 2013, 1311.2340.
[19] X. Koenig,et al. A CLASSIFICATION SCHEME FOR YOUNG STELLAR OBJECTS USING THE WIDE-FIELD INFRARED SURVEY EXPLORER AllWISE CATALOG: REVEALING LOW-DENSITY STAR FORMATION IN THE OUTER GALAXY , 2014, 1407.2262.
[20] B. Skiff,et al. VizieR Online Data Catalog , 2009 .
[21] K. Wright. Research notes , 2003, Nature Biotechnology.
[22] J. Prieto,et al. The ASAS-SN catalogue of variable stars I: The Serendipitous Survey , 2018, 1803.01001.
[23] Astrophysics,et al. An investigation of the photometric variability of confirmed and candidate Galactic Be stars using ASAS-3 data , 2018, 1805.07665.
[24] R. Kudritzki,et al. An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent , 2013, Nature.
[25] R. Grijs,et al. Optical–Mid-infrared Period–Luminosity Relations for W UMa-type Contact Binaries Based on Gaia DR 1: 8% Distance Accuracy , 2018, The Astrophysical Journal.