Robust adaptive remeshing strategy for large deformation, transient impact simulations

In this paper, an adaptive approach, with remeshing as essential ingredient, towards robust and efficient simulation techniques for fast transient, highly non-linear processes including contact is discussed. The necessity for remeshing stems from two sources: the capability to deal with large deformations that might even require topological changes of the mesh and the desire for an error driven distribution of computational resources. The overall computational approach is sketched, the adaptive remeshing strategy is presented and the crucial aspect, the choice of suitable error indicator(s), is discussed in more detail. Several numerical examples demonstrate the performance of the approach.

[1]  O. C. Zienkiewicz,et al.  Recovery procedures in error estimation and adaptivity. Part II: Adaptivity in nonlinear problems of elasto-plasticity behaviour , 1999 .

[2]  P. Perzyna,et al.  The Physics and Mathematics of Adiabatic Shear Bands , 2002 .

[3]  D. A. Field Qualitative measures for initial meshes , 2000 .

[4]  David W. Lischer,et al.  Adiabatic shearband in WHA in high-strain-rate compression , 1998 .

[5]  Jerry I. Lin Bounds on eigenvalues of finite element systems , 1991 .

[6]  Josep Sarrate,et al.  Adaptive finite element strategies based on error assessment , 1999 .

[7]  D. Owen,et al.  Design of simple low order finite elements for large strain analysis of nearly incompressible solids , 1996 .

[8]  Anne Habraken,et al.  Automatic adaptive remeshing for numerical simulations of metal forming , 1992 .

[9]  J. C. Simo,et al.  Associated coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation , 1992 .

[10]  S. Lo A NEW MESH GENERATION SCHEME FOR ARBITRARY PLANAR DOMAINS , 1985 .

[11]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[12]  T. Belytschko,et al.  H-adaptive finite element methods for dynamic problems, with emphasis on localization , 1993 .

[13]  Charles E. Anderson,et al.  TIME-RESOLVED PENETRATION OF LONG RODS INTO STEEL TARGETS , 1995 .

[14]  G. R. Johnson,et al.  Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures , 1985 .

[15]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[16]  Wolfgang A. Wall,et al.  A robust computational approach for dry powders under quasi-static and transient impact loadings , 2005 .

[17]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[18]  Ted Belytschko,et al.  Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems , 1991 .

[19]  J. C. Simo,et al.  Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory , 1992 .

[20]  T. Belytschko,et al.  Computational Methods for Transient Analysis , 1985 .

[21]  M. Ortiz,et al.  Adaptive Lagrangian modelling of ballistic penetration of metallic targets , 1997 .

[22]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[23]  Michael Ortiz,et al.  Adaptive mesh refinement in strain localization problems , 1991 .

[24]  G. Hahn A modified Euler method for dynamic analyses , 1991 .

[25]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[26]  Klaus-Jürgen Bathe,et al.  Error indicators and adaptive remeshing in large deformation finite element analysis , 1994 .

[27]  Lionel Fourment,et al.  Error estimators for viscoplastic materials: application to forming processes , 1995 .

[28]  M. Ortiz,et al.  Modelling and simulation of high-speed machining , 1995 .

[29]  R. Batra,et al.  An adaptive mesh refinement technique for the analysis of shear bands in plane strain compression of a thermoviscoplastic solid , 1992 .

[30]  Geoffrey Ingram Taylor,et al.  The use of flat-ended projectiles for determining dynamic yield stress I. Theoretical considerations , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[31]  T. Belytschko,et al.  Finite element derivative recovery by moving least square interpolants , 1994 .

[32]  Christian Miehe,et al.  A formulation of finite elastoplasticity based on dual co- and contra-variant eigenvector triads normalized with respect to a plastic metric☆ , 1998 .

[33]  K. Bathe,et al.  Effects of element distortions on the performance of isoparametric elements , 1993 .

[34]  A. C. Whiffin The use of flat-ended projectiles for determining dynamic yield stress - II. Tests on various metallic materials , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[35]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[36]  E. A. Repetto,et al.  Finite element analysis of nonsmooth contact , 1999 .

[37]  David R. Owen,et al.  The numerical modelling of ceramics subject to impact using adaptive discrete element techniques , 2003 .

[38]  Paulo A.F. Martins,et al.  FINITE ELEMENT REMESHING: A METAL FORMING APPROACH FOR QUADRILATERAL MESH GENERATION AND REFINEMENT , 1997 .

[39]  David R. Owen,et al.  On adaptive strategies for large deformations of elasto-plastic solids at finite strains : computational issues and industrial applications , 1999 .

[40]  R. Batra,et al.  Development of shear bands in dynamic plane strain compression of depleted uranium and tungsten blocks. Interim report, 15 November 1994-22 June 1995 , 1995 .

[41]  Y. Y. Zhu,et al.  Unified and mixed formulation of the 4‐node quadrilateral elements by assumed strain method: Application to thermomechanical problems , 1995 .