Spirals, shadows, and precession in HD 100453 – I. The orbit of the binary

In recent years, several protoplanetary discs have been observed to exhibit spirals, both in scattered light and (sub)millimetre continuum data. The HD 100453 binary star system hosts such a disc around its primary. Previous work has argued that the spirals were caused by the gravitational interaction of the secondary, which was assumed to be on a circular orbit, coplanar with the disc (meaning here the large outer disc, as opposed to the very small inner disc). However, recent observations of the CO gas emission were found incompatible with this assumption. In this paper, we run SPH simulations of the gas and dust disc for seven orbital configurations taken from astrometric fits and compute synthetic observations from their results. Comparing to high-resolution ALMA $^{12}$CO data, we find that the best agreement is obtained for an orbit with eccentricity $e=0.32$ and semi-major axis $a=207$ au, inclined by $61^\circ$ relative to the disc plane. The large misalignment between the disc and orbit planes is compatible with the tidal evolution of a circumprimary disc in an eccentric, unequal-mass binary star.

[1]  Daniel J. Price,et al.  Ongoing flyby in the young multiple system UX Tauri , 2020, Astronomy & Astrophysics.

[2]  Daniel J. Price,et al.  Binary-induced spiral arms inside the disc cavity of AB Aurigae , 2020, 2005.10722.

[3]  Daniel J. Price,et al.  Is the gap in the DS Tau disc hiding a planet? , 2020, 2005.04244.

[4]  B. Lazareff,et al.  A family portrait of disk inner rims around Herbig Ae/Be stars , 2020, Astronomy & Astrophysics.

[5]  F. Ménard,et al.  Nine Localized Deviations from Keplerian Rotation in the DSHARP Circumstellar Disks: Kinematic Evidence for Protoplanets Carving the Gaps , 2020, The Astrophysical Journal.

[6]  E. Bergin,et al.  Mass constraints for 15 protoplanetary discs from HD 1–0 , 2019, Astronomy & Astrophysics.

[7]  C. Dominik,et al.  Spiral arms in the protoplanetary disc HD100453 detected with ALMA: evidence for binary–disc interaction and a vertical temperature gradient , 2019, Monthly Notices of the Royal Astronomical Society.

[8]  Daniel J. Price,et al.  Kinematic detection of a planet carving a gap in a protoplanetary disk , 2019, Nature Astronomy.

[9]  A. Vigan,et al.  Hint of curvature in the orbital motion of the exoplanet 51 Eridani b using 3 yr of VLT/SPHERE monitoring , 2019, Astronomy & Astrophysics.

[10]  F. Ménard,et al.  ALMA study of the HD 100453 AB system and the tidal interaction of the companion with the disk , 2019, Astronomy & Astrophysics.

[11]  F. Louvet,et al.  Dusty spirals triggered by shadows in transition discs , 2018, Astronomy & Astrophysics.

[12]  R. Oudmaijer,et al.  Gaia DR2 study of Herbig Ae/Be stars , 2018, Astronomy & Astrophysics.

[13]  Daniel J. Price,et al.  Kinematic Evidence for an Embedded Protoplanet in a Circumstellar Disk , 2018, The Astrophysical Journal.

[14]  A. Vigan,et al.  Astrometric and photometric accuracies in high contrast imaging: The SPHERE speckle calibration tool (SpeCal) , 2018, Astronomy & Astrophysics.

[15]  P. J. Richards,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[16]  C. Clarke,et al.  Erratum to: Protoplanetary disc truncation mechanisms in stellar clusters: comparing external photoevaporation and tidal encounters , 2018, Monthly Notices of the Royal Astronomical Society.

[17]  Daniel J. Price,et al.  Enforcing dust mass conservation in 3D simulations of tightly coupled grains with the Phantom SPH code , 2018, 1803.03279.

[18]  Daniel J. Price,et al.  Circumbinary, not transitional: on the spiral arms, cavity, shadows, fast radial flows, streamers, and horseshoe in the HD 142527 disc , 2018, 1803.02484.

[19]  Daniel J. Price,et al.  MULTIGRAIN: a smoothed particle hydrodynamic algorithm for multiple small dust grains and gas , 2018, 1802.03213.

[20]  M. Bate On the diversity and statistical properties of protostellar discs , 2018, 1801.07721.

[21]  M. Kasper,et al.  The Orbit of the Companion to HD 100453A: Binary-driven Spiral Arms in a Protoplanetary Disk , 2018, 1801.03900.

[22]  M. Montesinos,et al.  Planetary-like spirals caused by moving shadows in transition discs , 2017, 1712.09157.

[23]  C. Surace,et al.  The SPHERE data center: a reference for high contrast imaging processing , 2017, 1712.06948.

[24]  S. Quanz,et al.  Direct mapping of the temperature and velocity gradients in discs Imaging the vertical CO snow line around IM Lupi , 2017, 1710.06450.

[25]  C. Dominik,et al.  Connecting the shadows: probing inner disk geometries using shadows in transitional disks , 2017, 1704.01844.

[26]  Bruce Macintosh,et al.  Orbits for the Impatient: A Bayesian Rejection-sampling Method for Quickly Fitting the Orbits of Long-period Exoplanets , 2017, 1703.10653.

[27]  J. Wisniewski,et al.  The Shadow Knows: Using Shadows to Investigate the Structure of the Pretransitional Disk of HD 100453 , 2017, 1703.00970.

[28]  Daniel J. Price,et al.  Phantom: A Smoothed Particle Hydrodynamics and Magnetohydrodynamics Code for Astrophysics , 2017, Publications of the Astronomical Society of Australia.

[29]  B. Lazareff,et al.  Structure of Herbig AeBe disks at the milliarcsecond scale: A statistical survey in the H band using PIONIER-VLTI , 2016, 1611.08428.

[30]  T. Fusco,et al.  Shadows and spirals in the protoplanetary disk HD 100453 , 2016, 1610.10089.

[31]  Kjetil Dohlen,et al.  SPHERE IRDIS and IFS astrometric strategy and calibration , 2016, Astronomical Telescopes + Instrumentation.

[32]  V. Christiaens,et al.  SPIRAL WAVES TRIGGERED BY SHADOWS IN TRANSITION DISKS , 2016, 1601.07912.

[33]  Eugene Chiang,et al.  AN M DWARF COMPANION AND ITS INDUCED SPIRAL ARMS IN THE HD 100453 PROTOPLANETARY DISK , 2015, 1512.04949.

[34]  Daniel Apai,et al.  DISCOVERY OF A TWO-ARMED SPIRAL STRUCTURE IN THE GAPPED DISK AROUND HERBIG Ae STAR HD 100453 , 2015, 1510.02212.

[35]  C. Waelkens,et al.  The structure of disks around intermediate-mass young stars from mid-infrared interferometry. Evidence for a population of group II disks with gaps , 2015, 1506.03274.

[36]  Pablo E. Román,et al.  PLANET FORMATION SIGNPOSTS: OBSERVABILITY OF CIRCUMPLANETARY DISKS VIA GAS KINEMATICS , 2015, 1505.06808.

[37]  S. Casassus,et al.  SHADOWS CAST BY A WARP IN THE HD 142527 PROTOPLANETARY DISK , 2014, 1412.4632.

[38]  K. Stassun,et al.  Multiplicity in Early Stellar Evolution , 2014, 1403.1907.

[39]  A. Lançon,et al.  SF2A-2013: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics , 2013 .

[40]  Harvard-Smithsonian CfA,et al.  Stellar Multiplicity , 2013, 1303.3028.

[41]  M. Bate Stellar, brown dwarf and multiple star properties from a radiation hydrodynamical simulation of star cluster formation , 2011, 1110.1092.

[42]  Daniel J. Price Smoothed particle hydrodynamics and magnetohydrodynamics , 2010, J. Comput. Phys..

[43]  R. Klein,et al.  THE FORMATION OF LOW-MASS BINARY STAR SYSTEMS VIA TURBULENT FRAGMENTATION , 2010, 1010.3702.

[44]  University of Exeter,et al.  On the diffusive propagation of warps in thin accretion discs , 2010, 1002.2973.

[45]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[46]  M. Min,et al.  Benchmark problems for continuum radiative transfer. High optical depths, anisotropic scattering, and polarisation , 2009, 0903.1231.

[47]  Daniel J. Price SPLASH: An Interactive Visualisation Tool for Smoothed Particle Hydrodynamics Simulations , 2007, Publications of the Astronomical Society of Australia.

[48]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[49]  F. Ménard,et al.  Monte Carlo radiative transfer in protoplanetary disks , 2006, astro-ph/0606550.

[50]  Eric B. Ford,et al.  Improving the Efficiency of Markov Chain Monte Carlo for Analyzing the Orbits of Extrasolar Planets , 2005, astro-ph/0512634.

[51]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[52]  Meeting abstracts , 2003 .

[53]  E. Ford Quantifying the Uncertainty in the Orbits of Extrasolar Planets , 2003, astro-ph/0305441.

[54]  C. Dominik,et al.  Understanding the spectra of isolated Herbig stars in the frame of a passive disk model , 2002, astro-ph/0212032.

[55]  R. Rafikov Nonlinear Propagation of Planet-generated Tidal Waves , 2001, astro-ph/0110496.

[56]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[57]  J. Bouwman,et al.  ISO spectroscopy of circumstellar dust in 14 Herbig Ae/Be systems: Towards an understanding of dust processing , 2000, astro-ph/0012295.

[58]  J. Weingartner,et al.  Dust Grain Size Distributions and Extinction in the Milky Way, LMC, and SMC , 2000, astro-ph/0008146.

[59]  C. Clarke,et al.  Observational implications of precessing protostellar discs and jets , 2000, astro-ph/0005333.

[60]  S. Lubow,et al.  On the Tilting of Protostellar Disks by Resonant Tidal Effects , 2000, astro-ph/0003028.

[61]  C. Terquem The Response of Accretion Disks to Bending Waves: Angular Momentum Transport and Resonances , 1998, astro-ph/9810172.

[62]  J. Papaloizou,et al.  On the dynamics of tilted discs around young stars , 1995 .

[63]  I. Bonnell A new binary formation mechanism , 1994 .

[64]  P. Bodenheimer,et al.  Fragmentation in a rotating protostar - A comparison of two three-dimensional computer codes , 1979 .

[65]  D. Mouillet,et al.  Deep imaging survey of young, nearby austral stars - VLT/NACO near-infrared Lyot-coronographic observations , 2010 .

[66]  T. Henning,et al.  VLT/NACO adaptive optics imaging of the Herbig Ae star HD 100453 , 2006 .

[67]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[68]  S. Anathpindika An Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds Supersonic Cloud Collision -i Supersonic Cloud Collision -ii , 2022 .