Hypothyroidism Decreases the ATP Sensitivity of KATP Channels from Rat Heart

[1]  M. Arita,et al.  Anoxia-induced activation of ATP-sensitive K+ channels in guinea pig ventricular cells and its modulation by glycolysis. , 1997, Cardiovascular research.

[2]  P. Light,et al.  Protein kinase C-induced changes in the stoichiometry of ATP binding activate cardiac ATP-sensitive K+ channels. A possible mechanistic link to ischemic preconditioning. , 1996, Circulation research.

[3]  S. Steinberg,et al.  Thyroid hormone represses protein kinase C isoform expression and activity in rat cardiac myocytes. , 1996, Circulation research.

[4]  A. Telang,et al.  Modulation of vascular KATP channels in hypothyroidism. , 1996, European journal of pharmacology.

[5]  J. Bryan,et al.  A Family of Sulfonylurea Receptors Determines the Pharmacological Properties of ATP-Sensitive K+ Channels , 1996, Neuron.

[6]  E. Marbán,et al.  Synergistic modulation of ATP-sensitive K+ currents by protein kinase C and adenosine. Implications for ischemic preconditioning. , 1996, Circulation research.

[7]  S. Nattel,et al.  Protein kinase C activates ATP-sensitive K+ current in human and rabbit ventricular myocytes. , 1996, Circulation research.

[8]  J. Inazawa,et al.  Reconstitution of IKATP: An Inward Rectifier Subunit Plus the Sulfonylurea Receptor , 1995, Science.

[9]  W. Giles,et al.  Thyroid status and diabetes modulate regional differences in potassium currents in rat ventricle. , 1995, The Journal of physiology.

[10]  A. Terzic,et al.  Cardiac ATP-sensitive K+ channels: regulation by intracellular nucleotides and K+ channel-opening drugs. , 1995, The American journal of physiology.

[11]  K. Takimoto,et al.  Glucocorticoid induction of Kv1.5 K+ channel gene expression in ventricle of rat heart. , 1994, Circulation research.

[12]  E. Carmeliet,et al.  Mode of regulation by G protein of the ATP‐sensitive K+ channel in guinea‐pig ventricular cell membrane. , 1994, The Journal of physiology.

[13]  B. Heath,et al.  Effect of glibenclamide, forskolin, and isoprenaline on the parallel activation of KATP and reduction of IK by cromakalim in cardiac myocytes. , 1994, Cardiovascular research.

[14]  P. Nicod,et al.  The Thyroid and the Heart , 1993, Circulation.

[15]  J. Makielski,et al.  Intracellular H+ and Ca2+ modulation of trypsin-modified ATP-sensitive K+ channels in rabbit ventricular myocytes. , 1993, Circulation research.

[16]  H. Obata,et al.  Functional and metabolic responses to ischemia in the isolated perfused hypothyroid rat heart. , 1992, Japanese circulation journal.

[17]  I Findlay,et al.  Inhibition of ATP-sensitive K+ channels in cardiac muscle by the sulphonylurea drug glibenclamide. , 1992, The Journal of pharmacology and experimental therapeutics.

[18]  W. Lederer,et al.  Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. , 1991, The American journal of physiology.

[19]  G. Radda,et al.  Hyperthyroidism results in increased glycolytic capacity in the rat heart. A 31P-NMR study. , 1990, Biochimica et biophysica acta.

[20]  F. Marumo,et al.  Interrelation between pinacidil and intracellular ATP concentrations on activation of the ATP-sensitive K+ current in guinea pig ventricular myocytes. , 1990, Circulation research.

[21]  W. Dillmann Biochemical basis of thyroid hormone action in the heart. , 1990, The American journal of medicine.

[22]  R. Kass,et al.  Activation of ATP-sensitive K channels in heart cells by pinacidil: dependence on ATP. , 1989, The American journal of physiology.

[23]  J. Weiss,et al.  Cardiac ATP-sensitive K+ channels. Evidence for preferential regulation by glycolysis , 1989, The Journal of general physiology.

[24]  M. Sanguinetti,et al.  BRL 34915 (cromakalim) activates ATP-sensitive K+ current in cardiac muscle. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[25]  G. Radda,et al.  Hyperthyroidism results in increased glycolytic capacity in the rat heart , 1988 .

[26]  A. Gualberto,et al.  The effect of experimental hypothyroidism on phosphofructokinase activity and fructose 2,6-bisphosphate concentrations in rat heart. , 1987, The Biochemical journal.

[27]  D. S. Neel,et al.  Influence of thyroid hormone levels on the electrical and mechanical properties of rabbit papillary muscle. , 1985, Journal of molecular and cellular cardiology.

[28]  A. Noma,et al.  Adenosine‐5'‐triphosphate‐sensitive single potassium channel in the atrioventricular node cell of the rabbit heart. , 1984, The Journal of physiology.

[29]  A. Noma,et al.  ATP-regulated K+ channels in cardiac muscle , 1983, Nature.

[30]  S. Goldman,et al.  Biochemical and physiologic effects of thyroid hormone on cardiac performance. , 1983, Progress in cardiovascular diseases.

[31]  A. Wilde,et al.  Electrophysiological effects of ATP sensitive potassium channel modulation: implications for arrhythmogenesis. , 1994, Cardiovascular research.

[32]  J. Weiss,et al.  Evidence for Preferential Regulation by Glycolysis , 1989 .