A Gentle Introduction to Structured Population Models: Three Worked Examples

In population models the basic unit is the individual. Therefore it is the task of the model builder to translate his/her knowledge about mechanisms on the individual level into models for the change in the number of such individuals.Generally, if one talks to an experimental ecologist (s)he has all kinds of alluring stories to tell about such mechanisms. However, as soon as it comes to writing down equations usually all that remains is but a handwaving reference when some mathematically convenient relationship between, say, death rate and population size is pulled mit of the hat. The main reason for this unsatisfactory state of affairs probably is that applied mathematics seems to revolve around differential equation models which in the simplest case of ordinary differential equations necessarily start at a rather high phenomenologicallevel. And biologists cannot but comply (but see e.g. MCKENDRICK (1926) for an early exception!). What clearly is needed, therefore, is a model1ing methodology which in principle can accomodate any necessary amouot of biological detail and yet is sufficiently near to the mainstream of applied mathematics that its toolscan be brought to bear. This is the backgrouod to our elforts as set forward in these notes.

[1]  F. H. D. van Batenburg,et al.  Holling's “hungry mantid” model for the invertebrate functional response considered as a Markov process. Part II: Negligible handling time , 1985 .

[2]  Pierangelo Marcati Asymptotic Behavior in Age-Dependent Population Dynamics with Hereditary Renewal Law , 1981 .

[3]  Andrew Paul Gutierrez,et al.  A POPULATION MODEL FOR PLANT GROWTH AND DEVELOPMENT: COUPLING COTTON–HERBIVORE INTERACTION , 1977, The Canadian Entomologist.

[4]  D. Widder,et al.  The Laplace Transform , 1943, The Mathematical Gazette.

[5]  E. Trucco On the average cellular volume in synchronized cell populations. , 1970, The Bulletin of mathematical biophysics.

[6]  W. Tschumy Competition between juveniles and adults in age-structured populations , 1982 .

[7]  N. Straalen Production and biomass turnover in stationary stage-structured populations , 1985 .

[8]  R. Nussbaum A folk theorem in the spectral theory of $C_{0}$-semigroups. , 1984 .

[9]  Satiable egg eating predators , 1983 .

[10]  BRANCHING PROCESSES IN PERIODICALLY VARYING ENVIRONMENT , 1985 .

[11]  D. Herbert,et al.  The continuous culture of bacteria; a theoretical and experimental study. , 1956, Journal of general microbiology.

[12]  L. Silverman Realization of linear dynamical systems , 1971 .

[13]  Age-specific coexistence in two-species competition , 1982 .

[14]  On the global stability of the logistic age-dependent population growth , 1982, Journal of mathematical biology.

[15]  Non-linear age-dependent population growth , 1980, Journal of mathematical biology.

[16]  M. Sabelis Biological control of two-spotted spider mites using phytoseiid predators , 1981 .

[17]  M. Gyllenberg The Age Structure of Populations of Cells Reproducing by Asymmetric Division , 1985 .

[18]  M. Pozio,et al.  Behaviour of solutions of some abstract functional differential equations and application to predator—prey dynamics☆ , 1980 .

[19]  Marek Kimmel,et al.  Asymptotic analysis of a cell cycle model based on unequal division , 1987 .

[20]  O. Diekmann,et al.  Prelude to hopf bifurcation in an epidemic model: Analysis of a characteristic equation associated with a nonlinear Volterra integral equation , 1982, Journal of mathematical biology.

[21]  Louis W. Botsford,et al.  The Effects of Increased Individual Growth Rates on Depressed Population Size , 1981, The American Naturalist.

[22]  S. I. Rubinow,et al.  Time-dependent solution to age-structured equations for sexual populations. , 1979, Theoretical population biology.

[23]  W. Gurney,et al.  Age- and density-dependent population dynamics in static and variable environments. , 1980, Theoretical population biology.

[24]  H. Heijmans Holling's “hungry mantid” model for the invertebrate functional response considered as a Markov process. III. Stable satiation distribution , 1984, Journal of mathematical biology.

[25]  M. Rotenberg Transport theory for growing cell populations. , 1983, Journal of theoretical biology.

[26]  M. Rotenberg,et al.  Theory of population transport. , 1972, Journal of theoretical biology.

[27]  Y. Hadar,et al.  A model for pellet size distributions in submerged mycelial cultures , 1983 .

[28]  G. I. Bell,et al.  A note on the dispersionless growth law for single cells. , 1970, The Bulletin of mathematical biophysics.

[29]  T. Kuczek Stochastic modeling for the bacterial life cycle , 1984 .

[30]  G. Polis,et al.  The Evolution and Dynamics of Intraspecific Predation , 1981 .

[31]  J. Beddington,et al.  Age structure effects in predator-prey interactions. , 1976, Theoretical population biology.

[32]  J. Prüss On the qualitative behaviour of populations with age-specific interactions , 1983 .

[33]  W. Scott A Mathematical Investigation , 1987 .

[34]  Existence and stability of equilibria in age-structured population dynamics , 1984 .

[35]  Louis W. Botsford,et al.  Optimal fishery policy for size-specific, density-dependent population models , 1981 .

[36]  P. Painter,et al.  Mathematics of microbial populations. , 1968, Annual review of microbiology.

[37]  A. Haimovici On the growth of a population dependent on ages and involving resources and pollution , 1979 .

[38]  R. May Thresholds and breakpoints in ecosystems with a multiplicity of stable states , 1977, Nature.

[39]  Mats Gyllenberg Nonlinear age-dependent population dynamics in continuously propagated bacterial cultures , 1982 .

[40]  M Kimmel,et al.  Analysis of a cell cycle model based on unequal division of metabolic constituents to daughter cells during cytokinesis. , 1984, Journal of theoretical biology.

[41]  John Shepherd,et al.  The sensitivity of age-structured populations to environmental variability , 1981 .

[42]  V. Lakshmikantham,et al.  Differential equations in abstract spaces , 1972 .

[43]  Morton E. Gurtin,et al.  Some simple models for nonlinear age-dependent population dynamics , 1979 .

[44]  Stability of an Age-Dependent Population , 1980 .

[45]  T. Hara A stochastic model and the moment dynamics of the growth and size distribution in plant populations , 1984 .

[46]  Fred Brauer,et al.  NONLINEAR AGE-DEPENDENT POPULATION GROWTH UNDER HARVESTING , 1983 .

[47]  E. Trucco,et al.  Mathematical models for cellular systems. The von foerster equation. Part II , 1965 .

[48]  Paul L. Butzer,et al.  Semi-groups of operators and approximation , 1967 .

[49]  Dynamics of maturing populations and their asymptotic behaviour , 1977 .

[50]  Hans A. J. Metz,et al.  State Space Models for Animal Behaviour , 1977 .

[51]  R. V. Erickson Functions of Markov Chains , 1970 .

[52]  G. Webb Logistic models of structured population growth , 1986 .

[53]  Sze-Bi Hsu,et al.  A Mathematical Theory for Single-Nutrient Competition in Continuous Cultures of Micro-Organisms , 1977 .

[54]  D. Levine Some Age-Structure Effects in Predator-Prey Models , 1983 .

[55]  C. Huffaker Experimental studies on predation : dispersion factors and predator-prey oscillations , 1958 .

[56]  Alan Hastings,et al.  Dispersal strategies in patchy environments , 1984 .

[57]  A. J. Lotka,et al.  Elements of Physical Biology. , 1925, Nature.

[58]  William Gurney,et al.  Instability and complex dynamic behaviour in population models with long time delays , 1982 .

[59]  M. Rotenberg Equilibrium and stability in populations whose interactions are age-specific. , 1975, Journal of theoretical biology.

[60]  Alan Hastings,et al.  Age-dependent predation is not a simple process. I. Continuous time models , 1983 .

[61]  G. Saidel Bacterial cell populations in a continuously changing environment. , 1968, Journal of theoretical biology.

[62]  S. Tuljapurkar Transient dynamics of yeast populations , 1983 .

[63]  The Coordination of Cell Growth and Division: A Comparison of Models , 1985 .

[64]  M. Gurtin Some questions and open problems in continuum mechanics and population dynamics , 1983 .

[65]  J. Reddingius,et al.  Notes on the mathematical theory of epidemics , 1971 .

[66]  Aldo Belleni-Morante,et al.  Applied semigroups and evolution equations , 1979 .

[67]  S. I. Rubinow,et al.  A mathematical model of neutrophil production and control in normal man , 1975, Journal of mathematical biology.

[68]  L. Schwartz Théorie des distributions , 1966 .

[69]  Alfred J. Lotka,et al.  A Problem in Age-Distribution , 1911 .

[70]  M. Saleem Egg-eating age-structured predators in interaction with age-structured prey , 1984 .

[71]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[72]  K. Cooke,et al.  The effect of integral conditions in certain equations modelling epidemics and population growth , 1980, Journal of mathematical biology.

[73]  R. Thompson,et al.  The age distribution from continuous biochemical reactors with cell reproduction by mitosis , 1981 .

[74]  G. Winley,et al.  The growth of a column of age and position dependent cells , 1980 .

[75]  Morton E. Gurtin,et al.  On the optimal harvesting of persistent age-structured populations , 1981 .

[76]  Theory of distributed quiescent state in the cell cycle. , 1982, Journal of theoretical biology.

[77]  Hiroshi Matano,et al.  Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems , 1984 .

[78]  Morton E. Gurtin,et al.  Diffusion models for age-structured populations , 1981 .

[79]  W. Silvert,et al.  Energy flux in the pelagic ecosystem: A time‐dependent equation , 1978 .

[80]  Ergodicity and exactness of the shift on C[0, ∞) and the semiflow of a first-order partial differential equation , 1984 .

[81]  The two stage integral population model , 1975 .

[82]  G. Greiner,et al.  Zur Perron-Frobenius-Theorie stark stetiger Halbgruppen , 1981 .

[83]  Olof J. Staffans,et al.  Local analyticity in weighted ¹-spaces and applications to stability problems for Volterra equations , 1982 .

[84]  H.J.A.M. Heijmans,et al.  Markov Semigroups and Structured Population Dynamics , 1986 .

[85]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[86]  O. Nerman,et al.  The growth and composition of branching populations , 1984, Advances in Applied Probability.

[87]  A. Lasota Stable and chaotic solutions of a first order partial differential equation , 1981 .

[88]  H. Lauwerier,et al.  Growth, fission and the stable size distribution , 1983 .

[89]  On the growth of populations with narrow spread in reproductive age , 1978 .

[90]  David P. Smith,et al.  Mathematical Demography: Selected Papers , 1977 .

[91]  J. S. Wang Statistical Theory of Superlattices with Long-Range Interaction. I. General Theory , 1938 .

[92]  B. D. Coleman,et al.  On the growth of populations with narrow spread in reproductive age , 1978 .

[93]  Doraiswami Ramkrishna,et al.  On the solution of statistical models of cell populations , 1971 .

[94]  J. Bowles,et al.  Fourier Analysis of Numerical Approximations of Hyperbolic Equations , 1987 .

[95]  J M Cushing,et al.  A predator prey model with age structure , 1982, Journal of mathematical biology.

[96]  Age structure in predator-prey systems. II. Functional response and stability and the paradox of enrichment , 1982 .

[97]  H. J. A. M. Heijmans,et al.  Structured populations, linear semigroups and positivity , 1984 .

[98]  T. Hamada Stationary scar-class structure of populations of schizosaccharomyces pombe , 1982 .

[99]  J. Adams,et al.  The age structure of populations of Saccharomyces cerevisiae. , 1981, Mathematical biosciences.

[100]  Sebastiaan A.L.M. Kooijman,et al.  On the dynamics of chemically stressed populations: The deduction of population consequences from effects on individuals , 1984 .

[101]  A Hastings,et al.  Delays in recruitment at different trophic levels: Effects on stability , 1984, Journal of mathematical biology.

[102]  L. Botsford,et al.  Behavior of Age-Specific, Density-Dependent Models and the Northern California Dungeness Crab (Cancer magister) Fishery , 1978 .

[103]  R. Nussbaum The radius of the essential spectrum , 1970 .

[104]  R. Barr,et al.  Formulation of a mathematical model for insect pest ecosystems-the cereal leaf beetle problem. , 1976, Journal of theoretical biology.

[105]  H. Heijmans On the stable size distribution of populations reproducing by fission into two unequal parts , 1984 .

[106]  A. Hastings Age-dependent predation is not a simple process. II. Wolves, ungulates, and a discrete time model for predation on juveniles with a stabilizing tail , 1984 .

[107]  K. Swick A Nonlinear Model for Human Population Dynamics , 1981 .

[108]  Charles J. Mode,et al.  Stochastic Processes in Demography and Their Computer Implementation , 1985 .

[109]  S. Busenberg,et al.  Separable models in age-dependent population dynamics , 1985 .

[110]  J. Mikusiński Operational Calculus , 1959 .

[111]  Mimmo Iannelli,et al.  A class of nonlinear diffusion problems in age-dependent population dynamics☆ , 1983 .

[112]  David M. Auslander,et al.  Dynamics of interacting populations , 1974 .

[113]  A. J. Lotka,et al.  RELATION BETWEEN BIRTH RATES AND DEATH RATES. , 1907, Science.

[114]  Henry L. Langhaar,et al.  General population theory in the age-time continuum , 1972 .

[115]  G. I. Bell,et al.  Cell growth and division. 3. Conditions for balanced exponential growth in a mathematical model. , 1968, Biophysical journal.

[116]  P. Brockwell,et al.  Percentage labeled mitoses curves in exponentially growing cell populations. , 1968, Journal of theoretical biology.

[117]  Jan Prüβ,et al.  Stability analysis for equilibria in age-specific population dynamics , 1983 .

[118]  R. Nagel,et al.  Asymptotic behavior of one-parameter semigroups of positive operators , 1984 .

[119]  Odo Diekmann,et al.  Limiting behaviour in an epidemic model , 1977 .

[120]  A. Lasota,et al.  Globally asymptotic properties of proliferating cell populations , 1984, Journal of mathematical biology.

[121]  Hiroki Tanabe,et al.  Equations of evolution , 1979 .

[122]  Akio Yamada,et al.  Transition phenomena in bacterial growth between logarithmic and stationary phases , 1980, Journal of mathematical biology.

[123]  W. Walter,et al.  The Solution of an Evolution Equation Describing Certain Types of Mechanical and Chemical Interaction , 1985 .

[124]  Avner Friedman,et al.  Volterra integral equations in Banach space , 1967 .

[125]  H.J.A.M. Heijmans,et al.  An eigenvalue problem related to cell growth , 1985 .

[126]  L. Murphy A nonlinear growth mechanism in size structured population dynamics , 1983 .

[127]  Richard Bellman,et al.  Differential-Difference Equations , 1967 .

[128]  H. G. Andrewartha,et al.  The struggle for existence , 1954 .

[129]  Morton E. Gurtin,et al.  Non-linear age-dependent population dynamics , 1974 .

[130]  S. M. Verduyn Lunel A sharp version of Henry's theorem on small solutions , 1986 .

[131]  Frank C. Hoppensteadt,et al.  An Age Dependent Epidemic Model , 1974 .

[132]  A Hastings,et al.  Spatial heterogeneity and the stability of predator-prey systems: predator-mediated coexistence. , 1978, Theoretical population biology.

[133]  T. Hamada,et al.  On the oscillatory transient stage structure of yeast population , 1982 .

[134]  L. Segel,et al.  Models of the influence of predation on aspect diversity in prey populations , 1982, Journal of mathematical biology.

[135]  S. Tuljapurkar Population dynamics in variable environments. IV. Weak ergodicity in the Lotka equation , 1982, Journal of mathematical biology.

[136]  Local stability of a population with density-dependent fertility. , 1979, Theoretical population biology.

[137]  J. S. Orr,et al.  The role of chalone in the control of the bone marrow stem cell population , 1970 .

[138]  A. Pazy,et al.  Semigroups of operators in Banach spaces , 1983 .

[139]  Gustav Doetsch Theorie und Anwendung der Laplace-Transformation , 1937 .

[140]  Frank Hoppenstaedt Mathematical Theories of Populations: Demographics, Genetics and Epidemics , 1975 .

[141]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[142]  K. Swick Stability and bifurcation in age-dependent population dynamics. , 1981, Theoretical population biology.

[143]  A. Cornish-Bowden Fundamentals of Enzyme Kinetics , 1979 .

[144]  Predator-prey relationships: egg-eating predators , 1983 .

[145]  Ludwig von Bertalanffy Untersuchungen ber die Gesetzlichkeit des Wachstums: I. Teil: Allgemeine Grundlagen der Theorie; Mathematische und physiologische Gesetzlichkeiten des Wachstums bei Wassertieren , 1934 .

[146]  John J. Tyson,et al.  The coordination of cell growth and division — intentional or Incidental? , 1985 .

[147]  A. J. Lotka The Stability of the Normal Age Distribution. , 1922, Proceedings of the National Academy of Sciences of the United States of America.

[148]  C. Rorres,et al.  Stability of an age specific population with density dependent fertility. , 1976, Theoretical population biology.

[149]  文魚 長谷川 D.R. Cox and H.D. Miller: The Theory of Stochastic Processes, Methuen. London, 1965, 398頁, 24×16cm, 4,200円. , 1966 .

[150]  O. Diekmann,et al.  On the bounded solutions of a nonlinear convolution equation , 1978 .

[151]  E. Venturino Age-structured predator-prey models , 1984 .

[152]  A. Fredrickson,et al.  Population-changing processes and the dynamics of sexual populations , 1975 .

[153]  H. H. Schaefer Banach Lattices and Positive Operators , 1975 .

[154]  C. S. Holling,et al.  Qualitative Analysis of Insect Outbreak Systems: The Spruce Budworm and Forest , 1978 .

[155]  On relationships between various distribution functions in balanced unicellular growth , 1968 .

[156]  S. I. Rubinow,et al.  A maturity-time representation for cell populations. , 1968, Biophysical journal.

[157]  G. B. Calleja,et al.  Analyses of fission scars as permanent records of cell division in Schizosaccharomyces pombe. , 1980, Journal of theoretical biology.

[158]  Laurel R. Fox,et al.  Cannibalism in Natural Populations , 1975 .

[159]  P. Waltman Competition models in population biology , 1983 .

[160]  Age structure in predator-prey systems: Intraspecific carnivore interaction, passive diffusion, and the paradox of enrichment , 1983, Journal of mathematical biology.

[161]  W. O. Kermack,et al.  Contributions to the Mathematical Theory of Epidemics. II. The Problem of Endemicity , 1932 .

[162]  John VanSickle,et al.  Analysis of a distributed-parameter population model based on physiological age. , 1977 .

[163]  William Gurney,et al.  Fluctuation periodicity, generation separation, and the expression of larval competition , 1985 .

[164]  T. Gage,et al.  Division synchrony and the dynamics of microbial populations: a size-specific model. , 1984, Theoretical population biology.

[165]  F. Wulff Animal community structure and energy budget calculations of a Daphnia magna (straus) population in relation to the rock pool environment , 1980 .

[166]  J. Tyson,et al.  Stability of the steady-state size distribution in a model of cell growth and division , 1985, Journal of mathematical biology.

[167]  James W. Sinko,et al.  A New Model For Age‐Size Structure of a Population , 1967 .

[168]  Tosio Kato Perturbation theory for linear operators , 1966 .

[169]  P. Doucet,et al.  Analysis of hunger from feeding rate observations , 1980, Animal Behaviour.

[170]  Simple Models for Age Dependent Predation , 1984 .

[171]  H.J.A.M. Heijmans,et al.  Small parameters in structured population models and the Trotter-Kato theorem , 1989 .

[172]  J M Cushing,et al.  Model stability and instability in age structured populations. , 1980, Journal of theoretical biology.

[173]  Nathan Keyfitz,et al.  Applied Mathematical Demography , 1978 .

[174]  A. J. Lotka A Contribution to the Theory of Self-Renewing Aggregates, With Special Reference to Industrial Replacement , 1939 .

[175]  N. M. Straalen,et al.  Physiological time and time-invariance , 1983 .

[176]  R. P. Canale,et al.  A theory of interacting microbial populations: multigroup approach. , 1976, Journal of theoretical biology.

[177]  Steady-State Size Distributions in Probabilistic Models of the Cell Division Cycle , 1985 .

[178]  James A. Yorke,et al.  Some equations modelling growth processes and gonorrhea epidemics , 1973 .

[179]  R. Paine,et al.  Disturbance, patch formation, and community structure. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[180]  James E. Bailey,et al.  On the dynamics of Cooper-Helmstetter-Donachie procaryote populations , 1980 .

[181]  A. Balakrishnan Applied Functional Analysis , 1976 .

[182]  D. Dibiasio,et al.  Predator-prey interactions: egg-eating predators , 1982 .

[183]  W. A. Beyer Solution to a mathematical model of cell growth, division, and death☆ , 1970 .

[184]  Michael C. Mackey,et al.  Minimizing therapeutically induced anemia , 1981, Journal of mathematical biology.

[185]  A mathematical model for the evolution of cell populations under the action of mutagenic agents , 1984 .

[186]  Mats Gyllenberg Stability of a Nonlinear Age-Dependent Population Model Containing a Control Variable , 1983 .

[187]  F. Rigler,et al.  MECHANISMS REGULATING THE FEEDING RATE OF DAPHNIA MAGNA STRAUS , 1963 .

[188]  W. Gurney,et al.  Stability switches in distributed delay models , 1985 .

[189]  K. Cooke,et al.  Discrete delay, distributed delay and stability switches , 1982 .

[190]  J. Tyson,et al.  Global asymptotic stability of the size distribution in probabilistic models of the cell cycle , 1985, Journal of mathematical biology.

[191]  P. Hartman Ordinary Differential Equations , 1965 .

[192]  A. Schumitzky,et al.  An Operator Residue Theorem with Applications to Branching Processes and Renewal Type Integral Equations , 1975 .

[193]  D. F. Petersen,et al.  Cell growth and division. II. Experimental studies of cell volume distributions in mammalian suspension cultures. , 1967, Biophysical journal.

[194]  G. Gripenberg Periodic solutions of an epidemic model , 1980, Journal of mathematical biology.

[195]  Jan Prüß Equilibrium solutions of age-specific population dynamics of several species , 1981 .

[196]  G. Aldis,et al.  The relationship between the age-position dependent integral formulation and the continuity equation for one dimensional growth , 1981 .

[197]  G. Webb Theory of Nonlinear Age-Dependent Population Dynamics , 1985 .

[198]  Richard H. Elderkin Seed dispersal in a patchy environment with global age dependence , 1982 .

[199]  Some Reducible Models of Age Dependent Dynamics , 1985 .

[200]  Morton E. Gurtin,et al.  On the optimal harvesting of age-structured populations: Some simple models☆ , 1981 .

[201]  A. L. Koch,et al.  A model for statistics of the cell division process. , 1962, Journal of general microbiology.

[202]  J. Metz,et al.  Holling’s ‘Hungry Mantid’ Model for the Invertebrate Functional Response Considered as a Markov Process. Part 0: A Survey of the Main Ideas and Results , 1984 .

[203]  William Streifer,et al.  Realistic Models in Population Ecology , 1974 .

[204]  J. Cushing Bifurcation of time periodic solutions of the McKendrick equations with applications to population dynamics , 1983 .

[205]  Lee A. Segel,et al.  Mathematical models in molecular and cellular biology , 1982, The Mathematical Gazette.

[206]  M. Witten MODELING CELLULAR SYSTEMS AND AGING PROCESSES: II. SOME THOUGHTS ON DESCRIBING AN ASYNCHRONOUSLY DIVIDING CELLULAR SYSTEM , 1982 .

[207]  S. I. Rubinow,et al.  A theory for the age and generation time distribution of a microbial population , 1974 .

[208]  A Hastings,et al.  Spatial heterogeneity and the stability of predator-prey systems. , 1977, Theoretical population biology.

[209]  J. Tyson,et al.  The distributions of cell size and generation time in a model of the cell cycle incorporating size control and random transitions. , 1985, Journal of theoretical biology.

[210]  Lloyd Demetrius,et al.  Statistical mechanics and population biology , 1983 .

[211]  M. Chipot On the equations of age-dependent population dynamics , 1983 .

[212]  R. L. Wheeler,et al.  Weighted $L^1$-Remainder Theorems for Resolvents of Volterra Equations , 1980 .

[213]  On the growth of populations with narrow spread in reproductive age: III. Periodic variations in the environment , 1979 .

[214]  P. Brunovský Notes on chaos in the cell population partial differential equation , 1983 .

[215]  M. Hirsch The dynamical systems approach to differential equations , 1984 .

[216]  G. I. Bell,et al.  Cell growth and division. IV. Determination of volume growth rate and division probability. , 1969, Biophysical journal.

[217]  Bryan L. Deuermeyer,et al.  Approximating a closed-form solution for cotton fruiting dynamics , 1981 .

[218]  Nathan Keyfitz,et al.  Demography Through Problems. , 1984 .

[219]  ON POPULATIONS THAT CANNIBALIZE THEIR YOUNG , 1982 .

[220]  G. Oster,et al.  Phenotypic structure and bifurcation behavior of population models. , 1976, Theoretical population biology.

[221]  O. Diekmann,et al.  Invariant manifolds for volterra integral equations of convolution type : (preprint) , 1984 .

[222]  A. Erdélyi,et al.  Tables of integral transforms , 1955 .

[223]  G. I. Bell,et al.  Cell growth and division. I. A mathematical model with applications to cell volume distributions in mammalian suspension cultures. , 1967, Biophysical journal.

[224]  G. Gripenberg Stability analysis of a distributed parameter model for the growth of micro-organisms , 1983 .

[225]  Stanly Steinberg,et al.  Meromorphic families of compact operators , 1968 .

[226]  A. G. Fredrickson,et al.  A mathematical theory of age structure in sexual populations: random mating and monogamous marriage models , 1971 .

[227]  James E. Bailey,et al.  Transient responses of budding yeast populations , 1983 .

[228]  R M Nisbet,et al.  The dynamics of population models with distributed maturation periods. , 1984, Theoretical population biology.

[229]  D. Levine On the stability of a predator-prey system with egg-eating predators , 1981 .

[230]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[231]  A. Bertuzzi,et al.  Mathematical models of the cell cycle with a view to tumor studies. , 1981, Mathematical biosciences.

[232]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[233]  D. DeAngelis,et al.  Implications of a partial-differential-equation cohort model , 1979 .

[234]  A. Sudbury,et al.  The expected population size in a cell-size-dependent branching process , 1981, Journal of Applied Probability.

[235]  Herbert Gajewski,et al.  On an Initial Value Problem for a Coagulation Equation with Growth Term , 1982 .

[236]  K Dietz,et al.  Proportionate mixing models for age-dependent infection transmission , 1985, Journal of mathematical biology.

[237]  L. Murphy Density dependent cellular growth in an age structured colony , 1983 .

[238]  Daniel S. Levine,et al.  On predator-prey interactions with predation dependent on age of prey , 1979 .

[239]  Semilinear hereditary hyperbolic systems with nonlocal boundary conditions, A , 1980 .

[240]  Jonathan Roughgarden,et al.  Competition and Theory in Community Ecology , 1983, The American Naturalist.

[241]  P. Jagers How probable is it to be first born? and other branching-process applications to kinship problems☆ , 1982 .

[242]  G. Webb Nonlinear semigroups and age-dependent population models , 1981 .

[243]  Approach to equilibrium in age structured populations with an increasing recruitment process , 1982 .

[244]  E. Trucco Collection functions for non-equivivant cell populations. , 1967, Journal of theoretical biology.

[245]  O. Diekmann,et al.  Thresholds and travelling waves for the geographical spread of infection , 1978, Journal of mathematical biology.

[246]  Michael C. Mackey,et al.  Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis , 1978 .

[247]  J. Metz,et al.  The epidemic in a closed population with all susceptibles equally vulnerable; some results for large susceptible populations and small initial infections , 1978, Acta biotheoretica.

[248]  C. Rorres A Nonlinear Model of Population Growth in Which Fertility is Dependent on Birth Rate , 1979 .

[249]  J. McLeod On the Scalar Transport Equation , 1964 .

[250]  D. DeAngelis,et al.  Genesis of Bimodal Size Distributions in Species Cohorts , 1982 .

[251]  Rutherford Aris,et al.  Mathematical Modelling Techniques , 1978 .

[252]  G. Gripenberg On some epidemic models , 1981 .

[253]  A mathematical theory of size distributions in tissue culture , 1983, Journal of mathematical biology.

[254]  Ivo Marek,et al.  Frobenius Theory of Positive Operators: Comparison Theorems and Applications , 1970 .

[255]  R. M. Nisbet,et al.  THE SYSTEMATIC FORMULATION OF TRACTABLE SINGLE-SPECIES POPULATION MODELS , 1983 .

[256]  Equilibria in structured populations , 1985, Journal of mathematical biology.

[257]  D. Strebel Environmental fluctuations and extinction—Single species , 1985 .

[258]  K. Kreith A Picone identity for strongly elliptic systems , 1971 .