High FET Performance for a Future CMOS $\hbox{GeO}_{2}$ -Based Technology

In Germanium-based metal-oxide-semiconductor field-effect transistors, a high-quality interfacial layer prior to high-¿ deposition is required to achieve low interface state densities and prevent Fermi level pinning. In this letter, the physical and electrical properties of a Ge/GeO2/Al2O3 gate stack are investigated. The GeO2 interlayer grown by radical oxidation and the formation of a germanate (GeAlOX) layer at the interface provide a stable high-quality passivation of the Ge channel. High carrier mobilities (235 cm2/V·s for electrons and 265 cm2/V·s for holes) are demonstrated for a relatively low 3.7-nm equivalent oxide thickness (EOT), enabling the realization of a high-performance CMOS technology with potential EOT scaling.

[1]  D. Antoniadis,et al.  Carrier mobilities and process stability of strained Si n- and p-MOSFETs on SiGe virtual substrates , 2001 .

[2]  Alessandro Molle,et al.  In situ chemical and structural investigations of the oxidation of Ge(001) substrates by atomic oxygen , 2006 .

[3]  K. Opsomer,et al.  High performance Ge pMOS devices using a Si-compatible process flow , 2006, 2006 International Electron Devices Meeting.

[4]  S. Ferrari,et al.  Interface engineering for Ge metal-oxide-semiconductor devices , 2007 .

[5]  X. Garros,et al.  Insights on fundamental mechanisms impacting Ge metal oxide semiconductor capacitors with high-k/metal gate stacks , 2007 .

[6]  T. Takahashi,et al.  Proof of Ge-interfacing Concepts for Metal/High-k/Ge CMOS - Ge-intimate Material Selection and Interface Conscious Process Flow , 2007, 2007 IEEE International Electron Devices Meeting.

[7]  Marc Heyns,et al.  Passivation of Ge ( 100 ) ∕ GeO2 ∕ high-κ Gate Stacks Using Thermal Oxide Treatments , 2008 .

[8]  Chi On Chui,et al.  On the Correct Extraction of Interface Trap Density of MOS Devices With High-Mobility Semiconductor Substrates , 2008, IEEE Transactions on Electron Devices.

[9]  Germanium for High Performance MOSFETs and Optical Interconnects , 2008 .

[10]  Interface Properties Improvement of Ge/Al2O3 and Ge/GeO2/Al2O3 Gate Stacks using Molecular Beam Deposition , 2008 .

[11]  R. Loo,et al.  Record ION/IOFF performance for 65nm Ge pMOSFET and novel Si passivation scheme for improved EOT scalability , 2008, 2008 IEEE International Electron Devices Meeting.

[12]  G. Pourtois,et al.  First-principles study of the structural and electronic properties of (100)Ge∕Ge(M)O2 interfaces (M=Al, La, or Hf) , 2008 .

[13]  Y. Oshima,et al.  Ge-Interface Engineering With Ozone Oxidation for Low Interface-State Density , 2008, IEEE Electron Device Letters.

[14]  Chunxiang Zhu,et al.  High mobility high-k/Ge pMOSFETs with 1 nm EOT -New concept on interface engineering and interface characterization , 2008, 2008 IEEE International Electron Devices Meeting.

[15]  GeOx interface layer reduction upon Al-gate deposition on a HfO2∕GeOx∕Ge(001) stack , 2008 .

[16]  Mitsuru Takenaka,et al.  Evidence of low interface trap density in GeO2∕Ge metal-oxide-semiconductor structures fabricated by thermal oxidation , 2008 .

[17]  Investigation of capacitance–voltage characteristics in Ge /high-κ MOS devices , 2009 .

[18]  C. H. Lee,et al.  Record-high electron mobility in Ge n-MOSFETs exceeding Si universality , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[19]  B. Kaczer,et al.  Impact of Epi-Si growth temperature on Ge-pFET performance , 2009, 2009 Proceedings of the European Solid State Device Research Conference.