A new four‐plasma categorization scheme for the solar wind

A three-parameter algebraic scheme is developed to categorize the solar wind at 1 AU into four plasma types: coronal-hole-origin plasma, streamer-belt-origin plasma, sector-reversal-region plasma, and ejecta. The three parameters are the proton-specific entropy Sp = Tp/np2/3, the proton Alfven speed vA, and the proton temperature Tp compared with a velocity-dependent expected temperature. Four measurements are needed to apply the scheme: the proton number density np, the proton temperature Tp, the magnetic field strength B, and the solar wind speed vsw. The scheme is tested and is found to be more accurate than existing categorization schemes. The categorization scheme is applied to the 1963–2013 OMNI2 data set spanning four solar cycles and to the 1998–2008 ACE data set. The statistical properties of the four types of plasma are examined. The sector-reversal-region plasma is found to have statistically low alpha-to-proton density ratios and high Alfven Mach numbers. The statistical relations between the proton and alpha-particle-specific entropies and oxygen and carbon charge-state-density ratios Sp, Sα, O7+/O6+, and C6+/C5+ from ACE are examined for the four types of plasma: the patterns observed imply a connection between sector-reversal-region plasma and ejecta and a connection between streamer-belt-origin plasma and coronal-hole-origin plasma. Plasma occurrence rates are examined and solar cycle patterns are found for ejecta, for coronal-hole-origin plasma, and for sector-reversal-region plasma.

[1]  C. Fälthammar,et al.  Relationship between changes in the interplanetary magnetic field and variations in the magnetic field at the Earth's surface , 1967 .

[2]  Joseph E. Borovsky,et al.  Altered solar wind-magnetosphere interaction at low Mach numbers: Coronal mass ejections , 2008 .

[3]  R. Lin,et al.  Large‐scale magnetic field inversions at sector boundaries , 2004 .

[4]  Michelle F. Thomsen,et al.  Why Kp is such a good measure of magnetospheric convection , 2004 .

[5]  E. Marsch,et al.  Are structures in high-speed streams signatures of coronal fine structures? , 1989 .

[6]  J. Gosling,et al.  On the origin of near-radial magnetic fields in the heliosphere: Numerical simulations , 2007 .

[7]  E. Marsch,et al.  Relationship between structures in the solar wind and their source regions in the corona , 1987 .

[8]  R. Woo,et al.  Heliospheric plasma sheet and coronal streamers , 1997 .

[9]  L. Althaus,et al.  NUCLEOSYNTHESIS DURING THE MERGER OF WHITE DWARFS AND THE ORIGIN OF R CORONAE BOREALIS STARS , 2011, 1107.2233.

[10]  J. Luhmann,et al.  Interplanetary Signatures of Unipolar Streamers and the Origin of the Slow Solar Wind , 2012 .

[11]  N. Schwadron,et al.  EVOLUTION OF THE RELATIONSHIPS BETWEEN HELIUM ABUNDANCE, MINOR ION CHARGE STATE, AND SOLAR WIND SPEED OVER THE SOLAR CYCLE , 2012 .

[12]  Charles J. Farrugia,et al.  Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections , 2014, Nature Communications.

[13]  Vincenzo Carbone,et al.  The Solar Wind as a Turbulence Laboratory , 2005 .

[14]  J. Borovsky Physics‐based solar wind driver functions for the magnetosphere: Combining the reconnection‐coupled MHD generator with the viscous interaction , 2013 .

[15]  Metod Saniga,et al.  Comparing eclipse observations of the 2008 August 1 solar corona with an MHD model prediction , 2010 .

[16]  Joseph E. Borovsky,et al.  Looking for evidence of mixing in the solar wind from 0.31 to 0.98 AU , 2012 .

[17]  J. Borovsky,et al.  How important are the alpha‐proton relative drift and the electron heat flux for the proton heating of the solar wind in the inner heliosphere? , 2014 .

[18]  W. Manchester,et al.  CARBON IONIZATION STAGES AS A DIAGNOSTIC OF THE SOLAR WIND , 2012 .

[19]  Hilary V. Cane,et al.  Near-earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963-2011) , 2012 .

[20]  N. Murphy,et al.  Strongly underwound magnetic fields in co‐rotating rarefaction regions: Observations and Implications , 2002 .

[21]  J. Freeman,et al.  The cold solar wind , 1985 .

[22]  H. Rosenbauer,et al.  Solar Wind Helium Ions: Observations of the Helios Solar Probes Between 0.3 and 1 AU E. MARSCH, 1 K.-H. MOHLHXUSER, 2 H. ROSENBAUER, 1 , 1982 .

[23]  K. Georgieva,et al.  Geoeffectiveness of different solar drivers, and long-term variations of the correlation between sunspot and geomagnetic activity , 2006 .

[24]  J. Steinberg,et al.  The Freestream Turbulence Effect in Solar‐Wind/Magnetosphere Coupling: Analysis Through the Solar Cycle and for Various Types of Solar Wind , 2013 .

[25]  J. Borovsky Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU?: FLUX TUBE TEXTURE OF SOLAR WIND , 2008 .

[26]  S. Wing,et al.  Effects of interplanetary magnetic field z component and the solar wind dynamic pressure on the geosynchronous magnetic field , 1997 .

[27]  D. Odstrcil,et al.  Improved Method for Specifying Solar Wind Speed Near the Sun , 2003 .

[28]  U. R. Rao,et al.  The solar wind velocity and its correlation with cosmic-ray variations and with solar and geomagnetic activity , 1963 .

[29]  Y. Kamide,et al.  Solar cycle variations in the storm‐substorm relationship , 1999 .

[30]  I. Richardson,et al.  The fraction of interplanetary coronal mass ejections that are magnetic clouds: Evidence for a solar cycle variation , 2004 .

[31]  J. Borovsky,et al.  Electron loss rates from the outer radiation belt caused by the filling of the outer plasmasphere: the calm before the storm , 2009 .

[32]  J. T. Gosling,et al.  Coronal streamers in the solar wind at 1 AU , 1980 .

[33]  J. Borovsky,et al.  On the heating of the outer radiation belt to produce high fluxes of relativistic electrons: Measured heating rates at geosynchronous orbit for high-speed stream-driven storms , 2010 .

[34]  J. Gosling The solar flare myth , 1993 .

[35]  F. Mariani,et al.  A statistical study of MHD discontinuities in the inner solar system: Helios 1 and 2 , 1983 .

[36]  I. Richardson,et al.  Interplanetary Coronal Mass Ejections During 1996-2007 , 2007 .

[37]  Edward J. Smith,et al.  The heliospheric plasma sheet , 1994 .

[38]  R. Wiens,et al.  Suprathermal electrons in high‐speed streams from coronal holes: Counterstreaming on open field lines at 1 AU , 2005 .

[39]  W. Feldman,et al.  Solar wind electron characteristics inside and outside coronal mass ejections , 2000 .

[40]  M. Hoshino,et al.  Electron acceleration in a nonrelativistic shock with very high Alfvén Mach number. , 2013, Physical review letters.

[41]  J. Steinberg,et al.  Alfvén waves as a possible source of long‐duration, large‐amplitude, and geoeffective southward IMF , 2014 .

[42]  R. Schwenn Large-scale structure of the interplanetary medium , 1990 .

[43]  M. Velli,et al.  Coronal pseudostreamers: Source of fast or slow solar wind? , 2012, 1211.6171.

[44]  J. Asbridge,et al.  The helium component of solar wind velocity streams , 1974 .

[45]  J. Gosling,et al.  Correlation of solar wind entropy and oxygen ion charge state ratio , 2004 .

[46]  R. Schwenn,et al.  Solar Wind Sources and Their Variations Over the Solar Cycle , 2007 .

[47]  J. Borovsky The velocity and magnetic field fluctuations of the solar wind at 1 AU: Statistical analysis of Fourier spectra and correlations with plasma properties , 2012 .

[48]  H. Mavromichalaki,et al.  A Complete Catalogue of High-Speed Solar Wind Streams during Solar Cycle 23 , 2014 .

[49]  P. Wurz,et al.  The Fe/O elemental abundance ratio in the solar wind as observed with SOHO CELIAS CTOF , 1999 .

[50]  D. Mccomas,et al.  Temporal and radial variation of the solar wind temperature-speed relationship , 2012 .

[51]  R. Goldstein,et al.  Features observed in the trailing regions of interplanetary clouds from coronal mass ejections , 1997 .

[52]  P. Canu,et al.  In situ observations of high-Mach number collisionless shocks in space plasmas , 2013 .

[53]  Christopher T. Russell,et al.  Properties of Interplanetary Coronal Mass Ejections at One AU During 1995 – 2004 , 2006 .

[54]  N. Sheeley,et al.  The Solar Eclipse of 2006 and the Origin of Raylike Features in the White-Light Corona , 2007 .

[55]  S. Antiochos,et al.  Global network of slow solar wind , 2012 .

[56]  J. Borovsky The Flux-Tube Texture of the Solar Wind , 2006 .

[57]  G. Gloeckler,et al.  Investigation of the Composition of Solar and Interstellar Matter Using Solar Wind and Pickup Ion Measurements with SWICS and SWIMS on the Ace Spacecraft , 1998 .

[58]  R. Wiens,et al.  Comparison of the Genesis solar wind regime algorithm results with solar wind composition observed by ACE , 2003 .

[59]  J. Borovsky,et al.  Exploring the cross correlations and autocorrelations of the ULF indices and incorporating the ULF indices into the systems science of the solar wind‐driven magnetosphere , 2014 .

[60]  J. Linker,et al.  A MODEL FOR THE SOURCES OF THE SLOW SOLAR WIND , 2010, 1102.3704.

[61]  Jie Zhang,et al.  Solar and interplanetary sources of major geomagnetic storms (Dst ≤ −100 nT) during 1996–2005 , 2007 .

[62]  J. Borovsky,et al.  Magnetic field at geosynchronous orbit during high-speed stream-driven storms: Connections to the solar wind, the plasma sheet, and the outer electron radiation belt , 2010 .

[63]  J. Borovsky On the variations of the solar wind magnetic field about the Parker spiral direction , 2010 .

[64]  R. Skoug,et al.  An improved expected temperature formula for identifying interplanetary coronal mass ejections , 2005 .

[65]  M. Hidalgo,et al.  Analysis of the heliospheric current sheet fine structure: Single or multiple current sheets , 2006 .

[66]  Ian G. Richardson,et al.  Sources of geomagnetic activity over the solar cycle: Relative importance of coronal mass ejections, high‐speed streams, and slow solar wind , 2000 .

[67]  Ester Antonucci,et al.  Slow wind and magnetic topology in the solar minimum corona in 1996-1997 , 2005 .

[68]  N. Wardle,et al.  The Apparent Layered Structure of the Heliospheric Current Sheet: Multi-Spacecraft Observations , 2009 .

[69]  B. Bavassano,et al.  Response of the geomagnetic activity to solar wind turbulence during solar cycle 23 , 2011 .

[70]  G. Gloeckler,et al.  Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft , 1998 .

[71]  E. Marsch,et al.  MHD Structures, Waves and Turbulence in the Solar Wind , 1995 .

[72]  E. Marsch,et al.  Heating and cooling of protons in the fast solar wind between 0.3 and 1 AU: Helios revisited , 2011 .

[73]  W. Feldman,et al.  Solar cycle evolution of high-speed solar wind streams , 1976 .

[74]  N. Sheeley,et al.  ON THE NATURE OF THE SOLAR WIND FROM CORONAL PSEUDOSTREAMERS , 2012 .

[75]  V. Bothmer,et al.  Signatures of fast CMEs in interplanetary space , 1996 .

[76]  F. Mariani,et al.  Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP-8 observations , 1981 .

[77]  J. Borovsky,et al.  The differences between storms driven by helmet streamer CIRs and storms driven by pseudostreamer CIRs , 2013 .

[78]  N. Schwadron,et al.  On the Coronal Magnetic Field: Consequences of Large-Scale Motions , 1999 .

[79]  T. Zurbuchen,et al.  The solar wind composition throughout the solar cycle: A continuum of dynamic states , 2002 .

[80]  A. Noullez,et al.  Turbulence and intermittency in the heliospheric magnetic field in fast and slow solar wind , 2009 .

[81]  Nat Gopalswamy,et al.  Coronal mass ejections of solar cycle 23 , 2006 .

[82]  S. Lepri,et al.  SOLAR WIND HEAVY IONS OVER SOLAR CYCLE 23: ACE/SWICS MEASUREMENTS , 2013 .

[83]  T. Nagatsuma Diurnal, semiannual, and solar cycle variations of solar wind–magnetosphere–ionosphere coupling , 2006 .

[84]  S. Cranmer Coronal Holes , 2009, Living reviews in solar physics.

[85]  G. Pneuman Some general properties of helmeted coronal structures , 1968 .

[86]  H. Spence,et al.  Heliospheric plasma sheets , 2004 .

[87]  D. Baker,et al.  Bidirectional solar wind electron heat flux events , 1987 .

[88]  J. Kuhn,et al.  Localized Enhancements of Fe+10 Density in the Corona as Observed in Fe XI 789.2 nm during the 2006 March 29 Total Solar Eclipse , 2007 .

[89]  R. Goldstein,et al.  Particle and Field Signatures of Coronal Mass Ejections in the Solar Wind , 2013 .

[90]  N. Wardle,et al.  PLASMOID RELEASES IN THE HELIOSPHERIC CURRENT SHEET AND ASSOCIATED CORONAL HOLE BOUNDARY LAYER EVOLUTION , 2011 .

[91]  C. Schrijver,et al.  Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME , 2003 .

[92]  A. Vourlidas,et al.  Physical parameters along the boundaries of a mid-latitude streamer and in its adjacent regions , 2008 .

[93]  F. Gliem,et al.  The iron, silicon and oxygen abundance in the solar wind measured with SOHO/CELIAS/MTOF , 1999 .

[94]  D. Intriligator Evidence of Solar-Cycle Variations in the Solar Wind , 1974 .

[95]  T. Zurbuchen,et al.  Global distribution of the solar wind during solar cycle 23: ACE observations , 2009 .

[96]  J. Harvey,et al.  Coronal holes, solar wind streams, and recurrent geomagnetic disturbances: 1973–1976 , 1976 .

[97]  J. Borovsky,et al.  Differences between CME‐driven storms and CIR‐driven storms , 2006 .

[98]  J. Steinberg,et al.  Solar wind stream interaction regions without sector boundaries , 2004 .

[99]  J. Kasper,et al.  SOLAR CYCLE VARIATIONS IN THE ELEMENTAL ABUNDANCE OF HELIUM AND FRACTIONATION OF IRON IN THE FAST SOLAR WIND: INDICATORS OF AN EVOLVING ENERGETIC RELEASE OF MASS FROM THE LOWER SOLAR ATMOSPHERE , 2011, 1109.1408.

[100]  K.Georgieva,et al.  Long-term variations of solar magnetic fields derived from geomagnetic data , 2013, 1307.8005.

[101]  W. Paterson,et al.  Signatures of nonlinear charged particle dynamics in Geotail comprehensive plasma instrument observations , 1999 .

[102]  M. Acuna,et al.  The ACE Magnetic Fields Experiment , 1998 .

[103]  N. Sheeley,et al.  Solar wind speed and coronal flux-tube expansion , 1990 .

[104]  J. Borovsky The effect of sudden wind shear on the Earth's magnetosphere: Statistics of wind shear events and CCMC simulations of magnetotail disconnections , 2012 .

[105]  L. Burlaga,et al.  Interplanetary magnetic clouds at 1 AU , 1982 .

[106]  Nathan A. Schwadron,et al.  On the sources of fast and slow solar wind , 2005 .

[107]  Larry C. Andrews,et al.  Random Data Analysis , 2012 .

[108]  Harlan E. Spence,et al.  An event‐based approach to validating solar wind speed predictions: High‐speed enhancements in the Wang‐Sheeley‐Arge model , 2005 .

[109]  J. G. Doyle,et al.  Coronal hole boundaries evolution at small scales - II. XRT view. Can small-scale outflows at CHBs be a source of the slow solar wind? , 2010, 1002.1675.

[110]  H. Singer,et al.  Solar wind and magnetospheric conditions leading to the abrupt loss of outer radiation belt electrons , 2007 .

[111]  E. Cliver,et al.  Sources of geomagnetic storms for solar minimum and maximum conditions during 1972–2000 , 2001 .

[112]  I. Richardson,et al.  Particle flows observed in ejecta during solar event onsets and their implication for the magnetic field topology , 1996 .

[113]  J. Lyon,et al.  The role of the bow shock in solar wind-magnetosphere coupling , 2011 .

[114]  E. Marsch,et al.  Spatial structures in high-speed streams as signatures of fine structures in coronal holes. , 1990 .

[115]  D. Baker,et al.  Changes in solar wind-magnetosphere coupling with solar cycle, season, and time relative to stream interfaces , 2013 .

[116]  Eckart Marsch,et al.  MHD structures, waves and turbulence in the solar wind: Observations and theories , 1995 .

[117]  D. Mccomas,et al.  CORONAL ELECTRON TEMPERATURE FROM THE SOLAR WIND SCALING LAW THROUGHOUT THE SPACE AGE , 2011 .

[118]  R. Skoug,et al.  INTERVALS OF RADIAL INTERPLANETARY MAGNETIC FIELDS AT 1 AU, THEIR ASSOCIATION WITH RAREFACTION REGIONS, AND THEIR APPARENT MAGNETIC FOOT POINTS AT THE SUN , 2013 .

[119]  D. Kouba,et al.  Solar influences on atmospheric circulation , 2012 .

[120]  P. Nicolosi,et al.  Composition of Coronal Streamers from the SOHO Ultraviolet Coronagraph Spectrometer , 1997 .

[121]  W. Feldman,et al.  Helium and hydrogen velocity differences in the solar wind , 1976 .

[122]  T. Zurbuchen,et al.  In-Situ Solar Wind and Magnetic Field Signatures of Interplanetary Coronal Mass Ejections , 2006 .

[123]  K. Georgieva,et al.  Long-term variations of solar magnetic fields derived from geomagnetic data , 2013, Geomagnetism and Aeronomy.

[124]  D. Mccomas,et al.  Oxygen flux in the solar wind: Ulysses observations , 2010 .

[125]  L. Přech,et al.  Observation of fast variations of the helium-ion abundance in the solar wind , 2014 .

[126]  Hilary V. Cane,et al.  Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996 – 2009): Catalog and Summary of Properties , 2010 .

[127]  R. Skoug,et al.  On the origin of radial magnetic fields in the heliosphere , 2002 .

[128]  R. Lepping,et al.  Automatic identification of magnetic clouds and cloud-like regions at 1 AU: occurrence rate and other properties , 2005 .

[129]  J. Freeman,et al.  Estimates of solar wind velocity gradients between 0.3 and 1 AU based on velocity probability distributions from Helios 1 at perihelion and aphelion , 1991 .

[130]  Density and Magnetic Field Signatures of Interplanetary 1/f Noise , 2006 .

[131]  N. Sheeley,et al.  The dynamical nature of coronal streamers , 2000 .

[132]  W. Feldman,et al.  Solar wind helium and hydrogen structure near the heliospheric current sheet: A signal of coronal streamers at 1 AU , 1981 .

[133]  J. King,et al.  Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data , 2005 .

[134]  J. Steinberg,et al.  Extremely high speed solar wind: 29–30 October 2003 , 2004 .

[135]  Ronald L. Moore,et al.  Quiescent current sheets in the solar wind and origins of slow wind , 2008 .

[136]  W. J. Burke Solar cycle dependence of solar wind energy coupling to the thermosphere , 2011 .

[137]  J. Borovsky,et al.  Solar wind turbulence and shear: A superposed-epoch analysis of corotating interaction regions at 1 AU , 2010 .

[138]  Victor J. Pizzo,et al.  Anomalously low proton temperatures in the solar wind following interplanetary shock waves—evidence for magnetic bottles? , 1973 .

[139]  Ramon Lopez,et al.  Solar cycle invariance in solar wind proton temperature relationships , 1987 .

[140]  Ian G. Richardson,et al.  Regions of abnormally low proton temperature in the solar wind (1965–1991) and their association with ejecta , 1995 .

[141]  J. W. Griffee,et al.  Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer , 1998 .

[142]  Ezequiel Echer,et al.  Interplanetary conditions causing intense geomagnetic storms (Dst ≤ −100 nT) during solar cycle 23 (1996–2006) , 2008 .

[143]  O. Olmedo,et al.  CORONAL MASS EJECTION PROPAGATION AND EXPANSION IN THREE-DIMENSIONAL SPACE IN THE HELIOSPHERE BASED ON STEREO/SECCHI OBSERVATIONS , 2010 .

[144]  J. Gosling,et al.  Multiple heliospheric current sheets and coronal streamer belt dynamics , 1993 .

[145]  W. Feldman,et al.  Evidence for a structure‐free state at high solar wind speeds , 1977 .

[146]  T. Pulkkinen,et al.  Changes in the response of the AL Index with solar cycle and epoch within a corotating interaction region , 2009 .