FALCON: multi-object AO

Abstract FALCON is a wide-field, multi-object integral field spectrograph equipped with adaptive optics. It is dedicated to the study of the formation process of primordial galaxies. The AO system uses natural guide stars, and the high sky coverage required for these studies is obtained using tomographic techniques for the wavefront analysis. The structure of the OA system is very new, and particularly suited for a future implementation on extremely large telescopes. To cite this article: E. Gendron et al., C. R. Physique 6 (2005).

[1]  Brian J. Bauman,et al.  MCAO for Gemini South , 2003, SPIE Astronomical Telescopes + Instrumentation.

[2]  R. Foy,et al.  Adaptive telescope with laser probe : isoplanatism and cone effect , 1990 .

[3]  David Mouillet,et al.  NAOS, the first AO system of the VLT: on-sky performance , 2003, SPIE Astronomical Telescopes + Instrumentation.

[4]  E. Marchetti,et al.  Modal tomography for adaptive optics , 1999 .

[5]  A. Agabi,et al.  Optical parameters relevant for High Angular Resolution at Paranal from GSM instrument and surface layer contribution , 2000 .

[6]  Antoine Labeyrie,et al.  Feasibility of adaptive telescope with laser probe , 1985 .

[7]  N. Hubin,et al.  Ground Layer Adaptive Optics , 2005 .

[8]  N. Hubin,et al.  Laser guide star for 3.6- and 8-m telescopes: performance and astrophysical implications , 1997, astro-ph/9710130.

[9]  Robert H. Dicke,et al.  Phase-contrast detection of telescope seeing errors and their correction. , 1975 .

[10]  G. Vdovin,et al.  Optimization-based operation of micromachined deformable mirrors , 1998, Astronomical Telescopes and Instrumentation.

[11]  Jacques M. Beckers,et al.  Increasing the size of the isoplanatic patch with multiconjugate adaptive optics. , 1988 .

[12]  T. Fusco,et al.  Deformable mirrors for the FALCON concept , 2005, SPIE Optics + Photonics.

[13]  M. L. Louarn Multi-Conjugate Adaptive Optics with laser guide stars: performance in the infrared and visible , 2002 .

[14]  C. Balkowski,et al.  Hα velocity fields and rotation curves of galaxies in clusters , 1994 .

[15]  D. Fried Anisoplanatism in adaptive optics , 1982 .

[16]  Frederic Zamkotsian,et al.  Static and dynamic micro deformable mirror characterization by phase-shifting and time-averaged interferometry , 2004, SPIE Astronomical Telescopes + Instrumentation.

[17]  N. Hubin,et al.  Optimized modal tomography in adaptive optics , 2001 .

[18]  Roberto Ragazzoni,et al.  MAD status report , 2004, SPIE Astronomical Telescopes + Instrumentation.

[19]  Eric Gendron,et al.  FALCON: a new-generation spectrograph with adaptive optics for the ESO VLT , 2004, SPIE Remote Sensing.

[20]  M. Giavalisco,et al.  A Counts-in-Cells Analysis Of Lyman-break Galaxies At Redshift z ~ 3 , 1998 .

[21]  Richard M. Clare,et al.  Diffraction-limited image restoration by post-compensation from simultaneous speckle and wavefront sensing observations , 2003, SPIE Astronomical Telescopes + Instrumentation.

[22]  M. Giavalisco,et al.  Infrared Observations of Nebular Emission Lines from Galaxies at z ≃ 3 , 1998, astro-ph/9806219.

[23]  Laurent M. Mugnier,et al.  Phase estimation for large field of view: application to multiconjugate adaptive optics , 1999, Optics + Photonics.

[24]  Vidal F. Canales,et al.  Improvements on the optical differentiation wavefront sensor , 2005 .

[25]  D. Fried Optical Resolution Through a Randomly Inhomogeneous Medium for Very Long and Very Short Exposures , 1966 .

[26]  Francois Rigaut,et al.  Laser guide star in adaptive optics : the tilt determination problem , 1992 .

[27]  H. Rix,et al.  Ultradeep Near-Infrared ISAAC Observations of the Hubble Deep Field South: Observations, Reduction, Multicolor Catalog, and Photometric Redshifts , 2002, astro-ph/0212236.

[28]  Andrei Tokovinin,et al.  Limiting precision of tomographic phase estimation , 2001 .

[29]  R. Noll Zernike polynomials and atmospheric turbulence , 1976 .