Prediction-Free, Real-Time Flexible Control of Tidal Lagoons through Proximal Policy Optimisation: A Case Study for the Swansea Lagoon

Tidal Range Structures (TRS) have been considered for large-scale electricity generation for their potential ability to produce reasonably predictable energy without the emission of greenhouse gases. Once the main forcing components for driving the tides have deterministic dynamics, the available energy in a given TRS has been estimated, through analytical and numerical optimisation routines, as a mostly predictable event. This constraint imposes state-of-art flexible operation methods to rely on tidal predictions to infer best operational strategies for TRS, with the additional cost of requiring to run optimisation routines for every new tide. In this paper, a Deep Reinforcement Learning approach (Proximal Policy Optimisation through Unity ML-Agents) is introduced to perform automatic operation of TRS. For validation, the performance of the proposed method is compared with six different operation optimisation approaches devised from the literature, utilising the Swansea Bay Tidal Lagoon as a case study. We show that our approach is successful in maximising energy generation through an optimised operational policy of turbines and sluices, yielding competitive results with state-of-art optimisation strategies, with the clear advantages of requiring training once and performing real-time automatic control of TRS with measured ocean data only. ∗Corresponding author e-mail address: tuliommoreira.tm@gmail.com Preprint submitted to Ocean Engineering January 25, 2022 ar X iv :2 10 6. 10 36 0v 3 [ cs .L G ] 2 3 Ja n 20 22

[1]  Túlio Marcondes Moreira,et al.  Implementation of Tidal Stream Turbines and Tidal Barrage Structures in DG-SWEM , 2019, Volume 10: Ocean Renewable Energy.

[2]  A. Ghaedi,et al.  Generated power enhancement of the barrage type tidal power plants , 2021 .

[3]  Tor Ame Johansen,et al.  Deep Reinforcement Learning Attitude Control of Fixed-Wing UAVs Using Proximal Policy optimization , 2019, 2019 International Conference on Unmanned Aircraft Systems (ICUAS).

[4]  Sergey Levine,et al.  Trust Region Policy Optimization , 2015, ICML.

[5]  M. Piggott,et al.  Tidal range energy resource and optimization – Past perspectives and future challenges , 2018, Renewable Energy.

[6]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[7]  Alex Graves,et al.  Asynchronous Methods for Deep Reinforcement Learning , 2016, ICML.

[8]  G. Aggidis,et al.  A World First: Swansea Bay Tidal lagoon in review , 2016 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  George A. Aggidis,et al.  Tidal range technologies and state of the art in review , 2016 .

[11]  M. Piggott,et al.  Utilising the flexible generation potential of tidal range power plants to optimise economic value , 2019, Applied Energy.

[12]  M. Piggott,et al.  Optimising tidal range power plant operation , 2018 .

[13]  Tidal Prediction , 1891, Nature.

[14]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[15]  Roger Alexander Falconer,et al.  Optimisation of tidal range schemes , 2017 .

[16]  J. Wolf,et al.  The tidal range energy potential of the West Coast of the United Kingdom , 2009 .

[17]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[18]  Alec Radford,et al.  Proximal Policy Optimization Algorithms , 2017, ArXiv.

[19]  T. Hammons Tidal Power , 1993, Nature.

[20]  Bettina Nicole Bockelmann-Evans,et al.  Numerical model simulations for optimisation of tidal lagoon schemes , 2016 .

[21]  George A. Aggidis,et al.  Tidal range turbines and generation on the Solway Firth , 2012 .

[22]  Roger A. Falconer,et al.  Design of tidal range energy generation schemes using a Genetic Algorithm model , 2021 .

[23]  Susana Gomez,et al.  Advances in Optimization and Numerical Analysis , 1994 .

[24]  D. Prandle,et al.  Simple theory for designing tidal power schemes , 1984 .

[25]  Alex Graves,et al.  Playing Atari with Deep Reinforcement Learning , 2013, ArXiv.

[26]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[27]  George A. Aggidis,et al.  Operational optimisation of a tidal barrage across the Mersey estuary using 0-D modelling , 2013 .

[28]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[29]  M. Piggott,et al.  Comparison of 0-D, 1-D and 2-D model capabilities for tidal range energy resource assessments , 2017 .

[30]  Sergey Levine,et al.  High-Dimensional Continuous Control Using Generalized Advantage Estimation , 2015, ICLR.

[31]  Marwan Mattar,et al.  Unity: A General Platform for Intelligent Agents , 2018, ArXiv.

[32]  Roger Alexander Falconer,et al.  The Severn Barrage and other tidal energy options: Hydrodynamic and power output modeling , 2009 .

[33]  Jingjing Xue,et al.  Genetic Algorithm in Tidal Range Schemes’ Optimisation , 2020, Energy.

[34]  Sean Petley,et al.  Swansea Bay tidal lagoon annual energy estimation , 2016 .

[35]  Roger A. Falconer,et al.  Optimising the Operation of Tidal Range Schemes , 2019, Energies.