Spatial Models for Fuzzy Clustering

A novel approach to fuzzy clustering for image segmentation is described. The fuzzy C-means objective function is generalized to include a spatial penalty on the membership functions. The penalty term leads to an iterative algorithm that is only slightly different from the original fuzzy C-means algorithm and allows the estimation of spatially smooth membership functions. To determine the strength of the penalty function, a criterion based on cross-validation is employed. The new algorithm is applied to simulated and real magnetic resonance images and is shown to be more robust to noise and other artifacts than competing approaches.

[1]  Jerry L. Prince,et al.  Adaptive fuzzy segmentation of magnetic resonance images , 1999, IEEE Transactions on Medical Imaging.

[2]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[3]  D. Louis Collins,et al.  Design and construction of a realistic digital brain phantom , 1998, IEEE Transactions on Medical Imaging.

[4]  Stanley J. Reeves,et al.  A cross-validation framework for solving image restoration problems , 1992, J. Vis. Commun. Image Represent..

[5]  Y. A. Tolias,et al.  On applying spatial constraints in fuzzy image clustering using a fuzzy rule-based system , 1998, IEEE Signal Processing Letters.

[6]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Yannis A. Tolias,et al.  Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[8]  Yuttapong Rangsanseri,et al.  Synthetic aperture radar (SAR) image segmentation using a new modified fuzzy c-means algorithm , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[9]  Alan Wee-Chung Liew,et al.  Fuzzy image clustering incorporating spatial continuity , 2000 .

[10]  Jerry L. Prince,et al.  An Automated Technique for Statistical Characterization of Brain Tissues in Magnetic Resonance Imaging , 1997, Int. J. Pattern Recognit. Artif. Intell..

[11]  Rama Chellappa,et al.  Unsupervised segmentation of polarimetric SAR data using the covariance matrix , 1992, IEEE Trans. Geosci. Remote. Sens..

[12]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[13]  Touradj Ebrahimi,et al.  Video segmentation based on multiple features for interactive multimedia applications , 1998, IEEE Trans. Circuits Syst. Video Technol..

[14]  G. Sapiro,et al.  Vector probability diffusion , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[15]  L O Hall,et al.  Review of MR image segmentation techniques using pattern recognition. , 1993, Medical physics.

[16]  M. Brandt,et al.  Estimation of CSF, white and gray matter volumes in hydrocephalic children using fuzzy clustering of MR images. , 1994, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[17]  Jun Zhang,et al.  The Mean Field Theory In EM Procedures For Markov Random Fields , 1991, Proceedings of the Seventh Workshop on Multidimensional Signal Processing.

[18]  Nikolas P. Galatsanos,et al.  Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation , 1992, IEEE Trans. Image Process..

[19]  James C. Bezdek,et al.  A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  D. M. Titterington,et al.  A Study of Methods of Choosing the Smoothing Parameter in Image Restoration by Regularization , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  G. B. Smith,et al.  Preface to S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images” , 1987 .

[23]  Scott T. Acton,et al.  Scale space classification using area morphology , 2000, IEEE Trans. Image Process..

[24]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .