Decomposition of the Kneser Graph into paths of length four

Necessary and sufficient conditions are given for the existence of a graph decomposition of the Kneser Graph K G n , 2 into paths of length four.

[1]  C. A. Rodger,et al.  Group divisible designs with two associate classes , 2014 .

[2]  Eth Zentrum,et al.  A Combinatorial Proof of Kneser's Conjecture , 2022 .

[3]  László Lovász,et al.  Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.

[4]  Dalibor Froncek,et al.  Cyclic decompositions of complete graphs into spanning trees , 2004, Discuss. Math. Graph Theory.

[5]  Edward D. Kim,et al.  Jahresbericht der deutschen Mathematiker-Vereinigung , 1902 .

[6]  Brian Alspach,et al.  Cycle Decompositions of Kn and Kn-I , 2001, J. Comb. Theory, Ser. B.

[7]  C. A. Rodger,et al.  4-Cycle Group-Divisible Designs with Two Associate Classes , 2001, Comb. Probab. Comput..

[8]  E. Billington,et al.  Short path decompositions of arbitrary complete multipartite graphs , 2007 .

[9]  Lijun Ji Existence of Steiner quadruple systems with a spanning block design , 2012, Discret. Math..

[10]  Dean G. Hoffman,et al.  On the construction of odd cycle systems , 1989, J. Graph Theory.

[11]  MICHAEL TARSI Decomposition of a Complete Multigraph into Simple Paths: Nonbalanced Handcuffed Designs , 1983, J. Comb. Theory, Ser. A.

[12]  Joshua Evan Greene,et al.  A New Short Proof of Kneser's Conjecture , 2002, Am. Math. Mon..

[13]  Ya-Chen Chen,et al.  Kneser Graphs Are Hamiltonian For nge3k , 2000, J. Comb. Theory, Ser. B.

[14]  Imre Bárány,et al.  A Short Proof of Kneser's Conjecture , 1978, J. Comb. Theory, Ser. A.

[15]  Mateja Sajna On decomposing Kn-I into cycles of a fixed odd length , 2002, Discret. Math..