The Local Theory of Normed Spaces and its Applications to Convexity
暂无分享,去创建一个
[1] F. John. Polar correspondence with respect to a convex region , 1937 .
[2] A characterization of euclidean spaces , 1940 .
[3] C. Rogers,et al. Absolute and Unconditional Convergence in Normed Linear Spaces. , 1950, Proceedings of the National Academy of Sciences of the United States of America.
[4] Leopoldo Nachbin,et al. A theorem of the Hahn-Banach type for linear transformations , 1950 .
[5] D. B. Goodner. Projections in normed linear spaces , 1950 .
[6] Einfache Herleitung der isoperimetrischen Ungleichung für abgeschlossene Punktmengen , 1951 .
[7] G. C. Shephard,et al. The difference body of a convex body , 1957 .
[8] H. Knothe. Contributions to the theory of convex bodies. , 1957 .
[9] A. Dvoretzky. A THEOREM ON CONVEX BODIES AND APPLICATIONS TO BANACH SPACES. , 1959, Proceedings of the National Academy of Sciences of the United States of America.
[10] E. Stein,et al. On the limits of sequences of operators , 1961 .
[11] On sign-independent and almost sign-independent convergence in normed linear spaces , 1962 .
[12] Anatole Beck,et al. A convexity condition in Banach spaces and the strong law of large numbers , 1962 .
[13] A. Pełczyński,et al. Bases, lacunary sequences and complemented subspaces in the spaces $L_{p}$ , 1962 .
[14] Joram Lindenstrauss. On the modulus of smoothness and divergent series in Banach spaces. , 1963 .
[15] R. C. James,et al. Uniformly Non-Square Banach Spaces , 1964 .
[16] D. Rutovitz. Some Parameters Associated with Finite-Dimensional Banach Spaces , 1965 .
[17] Daniel P. Giesy,et al. On a convexity condition in normed linear spaces , 1966 .
[18] A. Pełczyński. A characterization of Hilbert-Schmidt operators , 1967 .
[19] A. Pietsch,et al. Absolut p-summierende Abbildungen in normierten Räumen , 1967 .
[20] J. Lindenstrauss,et al. Absolutely summing operators in Lp spaces and their applications , 1968 .
[21] On the projection and macphail constants oflnp spaces , 1968 .
[22] David W. Dean,et al. Complemented subspaces and Λ systems in banach spaces , 1968 .
[23] E. Bolker. A class of convex bodies , 1969 .
[24] A. Pietsch,et al. p-nukleare und p-integrale Abbildungen in Banachräumen , 1969 .
[25] E. M. Nikishin. RESONANCE THEOREMS and SUPERLINEAR OPERATORS , 1970 .
[26] Absolutely p-summing operators in Hilbert space , 1970 .
[27] Y. Gordon,et al. Relations between some constants associated with finite dimensional Banach spaces , 1971 .
[28] Joram Lindenstrauss,et al. On the complemented subspaces problem , 1971 .
[29] Stanisław Kwapień,et al. Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients , 1972 .
[30] Per Enflo,et al. Banach spaces which can be given an equivalent uniformly convex norm , 1972 .
[31] R. W. James. SOME SELF-DUAL PROPERTIES OF NORMED LINEAR SPACES , 1972 .
[32] H. Hadwiger,et al. Gitterperiodische Punktmengen und Isoperimetrie , 1972 .
[33] Per Enflo,et al. A counterexample to the approximation problem in Banach spaces , 1973 .
[34] Y. Gordon,et al. Banach ideals of operators with applications , 1973 .
[35] B. Maurey,et al. Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces LP , 1974 .
[36] A nonreflexive Banach space that is uniformly nonoctahedral , 1974 .
[37] L. Tzafriri. On banach spaces with unconditional bases , 1974 .
[38] D. Garling. Operators with large trace, and a characterization of , 1974, Mathematical Proceedings of the Cambridge Philosophical Society.
[39] Y. Gordon,et al. Absolutely summing operators and local unconditional structures , 1974 .
[40] J. Hoffmann-jorgensen. Sums of independent Banach space valued random variables , 1974 .
[41] C. Borell. The Brunn-Minkowski inequality in Gauss space , 1975 .
[42] L. Dor. On Projections in L 1 , 1975 .
[43] P. Mani,et al. Almost ellipsoidal sections and projections of convex bodies , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.
[44] G. Pisier. Martingales with values in uniformly convex spaces , 1975 .
[45] J. Krivine,et al. Sous-espaces de dimension finie des espaces de Banach reticules , 1976 .
[46] S. Kwapień. A theorem on the rademacher series with vector valued coefficients , 1976 .
[47] L. E. Dor,et al. Potentials and isometric embeddings inL1 , 1976 .
[48] G. Pisier,et al. Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach , 1976 .
[49] T. Figiel,et al. The dimension of almost spherical sections of convex bodies , 1976 .
[50] Charles M. Newman,et al. On uncomplemented subspaces ofLp, 1 , 1977 .
[51] The distance of symmetric spaces from ℓ p (n) , 1977 .
[52] R. C. James. Nonreflexive spaces of type 2 , 1978 .
[53] N. Tomczak-Jaegermann. The Banach-Mazur distance between the trace classes ⁿ_{} , 1978 .
[54] Vitali Milman,et al. Minkowski spaces with extremal distance from the Euclidean space , 1978 .
[55] Unconditionality in tensor products , 1978 .
[56] A new proof of the Maurey-Pisier theorem , 1979 .
[57] Nicole Tomczak-Jaegermann,et al. Projections onto Hilbertian subspaces of Banach spaces , 1979 .
[58] D. R. Lewis. Ellipsoids defined by Banach ideal norms , 1979 .
[59] J. Vaaler. A geometric inequality with applications to linear forms , 1979 .
[60] N. Tomczak-Jaegermann. Computing 2-summing norm with few vectors , 1979 .
[61] C. Borell. On the integrability of Banach space valued Walsh polynomials , 1979 .
[62] Large subspaces ofl∞n and estimates of the gordon-lewis constantand estimates of the gordon-lewis constant , 1980 .
[63] H. König. Type constants and (q, 2)-summing norms defined byn vectors , 1980 .
[64] V. Milman,et al. Unconditional and symmetric sets inn-dimensional normed spaces , 1980 .
[65] G. Pisier,et al. Un théorème sur les opérateurs linéaires entre espaces de Banach qui se factorisent par un espace de Hilbert , 1980 .
[66] Yoav Benyamini,et al. Random factorization of operators between Banach spaces , 1981 .
[67] C. Schütt. On the uniqueness of symmetric bases in finite dimensional Banach spaces , 1981 .
[68] E. Gluskin,et al. Diameter of the Minkowski compactum is approximately equal to n , 1981 .
[69] V. Milman,et al. The distance between certainn-dimensional Banach spaces , 1981 .
[70] H. Lemberg. Nouvelle demonstration d’un theoreme de J. L. Krivine sur la finie representation delp dans un espace de Banach , 1981 .
[71] The finite-dimensionalPλ spaces with small λ , 1981 .
[72] M. Zippin. The range of a projection of small norm inl1n , 1981 .
[73] J. Bourgain. A counterexample to a complementation problem , 1981 .
[74] Gilles Pisier,et al. Holomorphic semi-groups and the geometry of Banach spaces , 1982 .
[75] William B. Johnson,et al. Embeddinglpm intol1n , 1982 .
[76] A remark on finite-dimensional $P_{λ}$-spaces , 1982 .
[77] P. McMullen,et al. Estimating the Sizes of Convex Bodies from Projections , 1983 .
[78] N. Alon,et al. Embedding ofl∞k in finite dimensional Banach spaces , 1983 .
[79] N. Tomczak-Jaegermann. The Banach-Mazur distance between symmetric spaces , 1983 .
[80] Gilles Pisier,et al. On the dimension of the ⁿ_{}-subspaces of Banach spaces, for 1≤<2 , 1983 .
[81] S. Szarek. The finite dimensional basis problem with an appendix on nets of Grassmann manifolds , 1983 .
[82] Distances between certain symmetric spaces , 1983 .
[83] Jean Bourgain,et al. On Martingales Transforms in Finite Dimensional Lattices with an Appendix on the K‐Convexity Constant , 1984 .
[84] N. Tomczak-Jaegermann. The Weak Distance between Finite-Dimensional Banach Spaces , 1984 .
[85] Finite-dimensional Banach spaces with symmetry constant of order √n , 1984 .
[86] P. McMullen. Volumes of Projections of unit Cubes , 1984 .
[87] J. Bourgain. Subspaces of L N ∞ , arithmetical diameter and sidon sets , 1985 .
[88] V. Milman,et al. Almost Euclidean quotient spaces of subspaces of a finite-dimensional normed space , 1985 .
[89] V. Milman,et al. A quantitative finite-dimensional krivine theorem , 1985 .
[90] J. Lindenstrauss,et al. On The Banach-Mazur Distance Between Spaces Having an Unconditional Basis , 1986 .
[91] K. Ball. Cube slicing in ⁿ , 1986 .
[92] Jean Bourgain,et al. Distances between normed spaces, their subspaces and quotient spaces , 1986 .
[93] D. Amir. Characterizations of Inner Product Spaces , 1986 .
[94] Gilles Pisier,et al. Banach spaces with a weak cotype 2 property , 1986 .
[95] Real isomorphic complex Banach spaces need not be complex isomorphic , 1986 .
[96] Jean Bourgain,et al. ON HIGH DIMENSIONAL MAXIMAL FUNCTIONS ASSOCIATED TO CONVEX BODIES , 1986 .
[97] On the existence and uniqueness of complex structure and spaces with “few” operators , 1986 .
[98] G. Pisier,et al. Random series in the real interpolation spaces between the spaces v p , 1987 .
[99] J. Lindenstrauss,et al. The relation between the distance and the weak distance for spaces with a symmetric basis , 1987 .
[100] V. Milman,et al. New volume ratio properties for convex symmetric bodies in ℝn , 1987 .
[101] On the covering numbers of convex bodies , 1987 .
[102] J. Bourgain,et al. Invertibility of ‘large’ submatrices with applications to the geometry of Banach spaces and harmonic analysis , 1987 .
[103] J. Beck,et al. Irregularities of distribution , 1987 .
[104] A strict inequality for projection constants , 1987 .
[105] Stanislaw J. Szarek,et al. A Banach space without a basis which has the bounded approximation property , 1987 .
[106] David Ullrich. An extension of the Kahane-Khinchine inequality , 1988 .
[107] J. Lindenstrauss,et al. Minkowski sums and symmetrizations , 1988 .
[108] Y. Gordon. Gaussian Processes and Almost Spherical Sections of Convex Bodies , 1988 .
[109] Subspace mixing properties of operators in $R^n$ with applications to Gluskin spaces , 1988 .
[110] K. Ball. Logarithmically concave functions and sections of convex sets in $R^{n}$ , 1988 .
[111] On finite dimensional homogeneous Banach spaces , 1988 .
[112] J. Lindenstrauss,et al. Distribution of points on spheres and approximation by zonotopes , 1988 .
[113] A. Pajor,et al. Sections of the unit ball of Ipn , 1988 .
[114] V. Milman,et al. A few observations on the connections between local theory and some other fields , 1988 .
[115] Jean Bourgain,et al. The Banach-Mazur distance to the cube and the Dvoretzky-Rogers factorization , 1988 .
[116] An upper bound for the projection constant , 1988 .
[117] Vitali Milman,et al. Isomorphic symmetrization and geometric inequalities , 1988 .
[118] J. Lindenstrauss,et al. Almost euclidean sections in spaces with a symmetric basis , 1989 .
[119] V. Milman,et al. Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space , 1989 .
[120] A. Pajor,et al. On santaló's inequality , 1989 .
[121] Symmetric block bases in finite-dimensional normed spaces , 1989 .
[122] J. Lindenstrauss,et al. Approximation of zonoids by zonotopes , 1989 .
[123] Jean Bourgain,et al. On the duality problem for entropy numbers of operators , 1989 .
[124] J. Bourgain,et al. Geometry of finite dimensional subspaces and quotients of Lp , 1989 .
[125] M. Talagrand,et al. An “isomorphic” version of the sauer-shelah lemma and the banach-mazur distance to the cube , 1989 .
[126] Jean Bourgain,et al. Estimates related to steiner symmetrizations , 1989 .
[127] K. Ball. Volumes of sections of cubes and related problems , 1989 .
[128] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[129] J. Linhart,et al. Approximation of a ball by zonotopes using uniform distribution on the sphere , 1989 .
[130] B. Carl,et al. Entropy, Compactness and the Approximation of Operators , 1990 .
[131] J. Bourgain,et al. Embeddinglpk in subspaces ofLp forp>2 , 1990 .
[132] M. Talagrand. Embedding subspaces of L1 into l1N , 1990 .
[133] A. Pajor,et al. On the Blaschke-Santaló inequality , 1990 .
[134] Nicole Tomczak-Jaegermann,et al. Bounds for projection constants and 1-summing norms , 1990 .
[135] S. Szarek. Spaces with large distance to l∞n and random matrices , 1990 .
[136] S. Szarek,et al. On parallelepipeds of minimal volume containing a convex symmetric body in ℝn , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.
[137] J. Bourgain. On the distribution of polynomials on high dimensional convex sets , 1991 .
[138] M. Schmuckenschläger. On the dependence on ε in a theorem of J. Bourgain, J. Lindenstrauss and V.D. Milman , 1991 .
[139] K. Ball. The plank problem for symmetric bodies , 1990, math/9201218.
[140] Computing summing norms and type constants on few vectors , 1991 .
[141] G. Schechtman,et al. On the distance of subspaces of ⁿ_{} to ^{}_{} , 1991 .
[142] Keith Ball,et al. Normed spaces with a weak-Gordon-Lewis property , 1991 .
[143] S. Szarek. On the geometry of the Banach-Mazur compactum , 1991 .
[144] V. Milman. Some applications of duality relations , 1991 .
[145] A solution of the finite-dimensional homogeneous Banach space problem , 1991 .
[146] Computingp-summing norms with few vectors , 1992, math/9209215.
[147] O. Palmon,et al. The only convex body with extremal distance from the ball is the simplex , 1992 .
[148] Subspaces oflpN of small codimension , 1992 .
[149] Antisymmetric tensor products of absolutely p -summing operators , 1992 .
[150] Gerold Wagner. On a new method for constructing good point sets on spheres , 1993, Discret. Comput. Geom..
[151] W. T. Gowers,et al. A finite-dimensional normed space with two non-equivalent symmetric bases , 1994 .