Trace elements and sulfur isotopic compositions of sulfides in the giant Dahongshan Fe-Cu-(Au-Co) deposit, SW China: Implications for fluid evolution and Co enrichment in IOCG systems

[1]  A. Williams-Jones,et al.  Constraints on the Genesis of Cobalt Deposits: Part I. Theoretical Considerations , 2022, Economic Geology.

[2]  Xiaochun Li,et al.  Cathodoluminescent, chemical and strontium isotopic characteristics of apatite from lanniping Fe-Cu deposit, southwestern china: Implications for fluid evolution in IOCG systems , 2022, Ore Geology Reviews.

[3]  R. Skirrow Iron oxide copper-gold (IOCG) deposits – a review (part 1): settings, mineralogy, ore geochemistry, and classification , 2021, Ore Geology Reviews.

[4]  Yue-heng Yang,et al.  UNRAVELING MINERALIZATION AND MULTISTAGE HYDROTHERMAL OVERPRINTING HISTORIES BY INTEGRATED IN SITU U-Pb AND Sm-Nd ISOTOPES IN A PALEOPROTEROZOIC BRECCIA-HOSTED IOCG DEPOSIT, SW CHINA , 2021 .

[5]  J. Crowley,et al.  ZIRCON TRACE ELEMENT GEOCHEMISTRY AS AN INDICATOR OF MAGMA FERTILITY IN IRON OXIDE COPPER-GOLD PROVINCES , 2021, Economic Geology.

[6]  Huayong Chen,et al.  Multiple sulfur isotopes in post-Archean deposits as a potential tracer for fluid mixing processes: An example from an iron oxide–copper–gold (IOCG) deposit in southern Peru , 2021, Chemical Geology.

[7]  A. R. Butcher,et al.  Geometallurgy of cobalt ores: A review , 2021 .

[8]  J. Crowley,et al.  OPENING THE MAGMATIC-HYDROTHERMAL WINDOW: HIGH-PRECISION U-Pb GEOCHRONOLOGY OF THE MESOPROTEROZOIC OLYMPIC DAM Cu-U-Au-Ag DEPOSIT, SOUTH AUSTRALIA , 2020 .

[9]  R. Large,et al.  Pyrite trace element behavior in magmatic-hydrothermal environments: An LA-ICPMS imaging study , 2020 .

[10]  M. Reich,et al.  Geochemical and Isotopic Signature of Pyrite as a Proxy for Fluid Source and Evolution in the Candelaria-Punta del Cobre Iron Oxide Copper-Gold District, Chile , 2020, Economic Geology.

[11]  A. Boyce,et al.  The sulfur isotope evolution of magmatic-hydrothermal fluids: insights into ore-forming processes , 2020, Geochimica et Cosmochimica Acta.

[12]  Weihua Liu,et al.  Controls on cobalt and nickel distribution in hydrothermal sulphide deposits in Bergslagen, Sweden - constraints from solubility modelling , 2020 .

[13]  L. Corriveau,et al.  Geochemistry of hydrothermal tourmaline from IOCG occurrences in the Great Bear magmatic zone: Implications for fluid source(s) and fluid composition evolution , 2020 .

[14]  Xiaoliang Liang,et al.  Crystal habit-directed gold deposition on pyrite: Surface chemical interpretation of the pyrite morphology indicative of gold enrichment , 2019, Geochimica et Cosmochimica Acta.

[15]  Shuo Yin,et al.  The role of mineral nanoparticles at a fluid-magnetite interface: Implications for trace-element uptake in hydrothermal systems , 2019, American Mineralogist.

[16]  N. Evans,et al.  Sulfur isotopes, trace element, and textural analyses of pyrite, arsenopyrite and base metal sulfides associated with gold mineralization in the Pataz-Parcoy district, Peru: implication for paragenesis, fluid source, and gold deposition mechanisms , 2019, Mineralium Deposita.

[17]  Qi‐Wei Li,et al.  Neoproterozoic magmatism in the western and northern margins of the Yangtze Block (South China) controlled by slab subduction and subduction-transform-edge-propagator , 2018, Earth-Science Reviews.

[18]  L. Danyushevsky,et al.  Using integrated in-situ sulfide trace element geochemistry and sulfur isotopes to trace ore-forming fluids: Example from the Mina Justa IOCG deposit (southern Perú) , 2018, Ore Geology Reviews.

[19]  Shenghong Hu,et al.  Accurate determination of sulfur isotopes (δ33S and δ34S) in sulfides and elemental sulfur by femtosecond laser ablation MC-ICP-MS with non-matrix matched calibration , 2017 .

[20]  A. Boyce,et al.  A magmatic source of hydrothermal sulfur for the Prominent Hill deposit and associated prospects in the Olympic iron oxide copper-gold (IOCG) province of South Australia , 2017 .

[21]  G. Jenkin,et al.  A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes , 2017 .

[22]  Mei-Fu Zhou,et al.  Geology, Geochronology, and Geochemistry of the Dahongshan Fe-Cu-(Au-Ag) Deposit, Southwest China: Implications for the Formation of Iron Oxide Copper-Gold Deposits in Intracratonic Rift Settings , 2017 .

[23]  K. Kouzmanov,et al.  Sulfide Minerals in Hydrothermal Deposits , 2017 .

[24]  Tao Yang,et al.  Sulfur isotope fractionation in pyrite during laser ablation: Implications for laser ablation multiple collector inductively coupled plasma mass spectrometry mapping , 2017 .

[25]  J. Farquhar,et al.  Theoretical estimates of equilibrium sulfur isotope effects in aqueous sulfur systems: Highlighting the role of isomers in the sulfite and sulfoxylate systems , 2016 .

[26]  Mei-Fu Zhou,et al.  Using elemental and boron isotopic compositions of tourmaline to trace fluid evolutions of IOCG systems: The worldclass Dahongshan Fe Cu deposit in SW China , 2016 .

[27]  N. Cook,et al.  Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively-Coupled Plasma Mass Spectrometry: Approaches and Opportunities , 2016 .

[28]  A. D. Saunders,et al.  Rapid thermal rejuvenation of high-crystallinity magma linked to porphyry copper deposit formation; evidence from the Koloula Porphyry Prospect, Solomon Islands , 2016 .

[29]  M. Reich,et al.  TRACE ELEMENT SIGNATURE OF PYRITE FROM THE LOS COLORADOS IRON OXIDE-APATITE (IOA) DEPOSIT, CHILE: A MISSING LINK BETWEEN ANDEAN IOA AND IRON OXIDE COPPER-GOLD SYSTEMS? , 2016 .

[30]  M. Cuney,et al.  Geology of uranium deposits , 2016 .

[31]  G. Mudd,et al.  A Detailed Assessment of Global Rare Earth Element Resources: Opportunities and Challenges , 2015 .

[32]  Mei-Fu Zhou,et al.  In situ Sr isotope analysis of apatite by LA-MC-ICPMS: constraints on the evolution of ore fluids of the Yinachang Fe-Cu-REE deposit, Southwest China , 2015, Mineralium Deposita.

[33]  Mei Zhou,et al.  Proterozoic Fe-Cu metallogeny and supercontinental cycles of the southwestern Yangtze Block, southern China and northern Vietnam , 2014 .

[34]  R. Ewing,et al.  The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits , 2014 .

[35]  Zhenjie Zhang,et al.  Petrography and geochemistry of the Shilu Fe–Co–Cu ore district, South China: Implications for the origin of a Neoproterozoic BIF system , 2014 .

[36]  J. Long,et al.  Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution , 2014 .

[37]  Gavin M. Mudd,et al.  Quantifying the recoverable resources of by-product metals: The case of cobalt , 2013 .

[38]  Mei-Fu Zhou,et al.  Late Paleoproterozoic sedimentary and mafic rocks in the Hekou area, SW China: Implication for the reconstruction of the Yangtze Block in Columbia , 2013 .

[39]  Huayong Chen External sulphur in IOCG mineralization: Implications on definition and classification of the IOCG clan , 2013 .

[40]  A. Boyce,et al.  Remobilisation features and structural control on ore grade distribution at the Konkola stratiform Cu-Co ore deposit, Zambia , 2013 .

[41]  M. Parada,et al.  Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study , 2013 .

[42]  K. Haase,et al.  Trace element systematics of pyrite from submarine hydrothermal vents , 2013 .

[43]  F. Velasco,et al.  The boron isotope geochemistry of tourmaline-rich alteration in the IOCG systems of northern Chile: implications for a magmatic-hydrothermal origin , 2012, Mineralium Deposita.

[44]  Robert Marschik,et al.  The evolution of the hydrothermal IOCG system in the Mantoverde district, northern Chile: new evidence from microthermometry and stable isotope geochemistry , 2012, Mineralium Deposita.

[45]  R. Hough,et al.  Nanogeoscience in ore systems research: Principles, methods, and applications. Introduction and preface to the special issue , 2011 .

[46]  Yuri L. Mikhlin,et al.  Understanding the initial stages of precious metals precipitation: Nanoscale metallic and sulfidic species of gold and silver on pyrite surfaces , 2011 .

[47]  A. Williams-Jones,et al.  An experimental study of Cobalt (II) complexation in Cl and H 2 S-bearing hydrothermal solutions , 2011 .

[48]  Mei-Fu Zhou,et al.  Fe–Cu deposits in the Kangdian region, SW China: a Proterozoic IOCG (iron-oxide–copper–gold) metallogenic province , 2011 .

[49]  J. Hazemann,et al.  Speciation and thermodynamic properties for cobalt chloride complexes in hydrothermal fluids at 35-440 degrees C and 600 bar: An in-situ XAS study , 2011 .

[50]  M. Norman,et al.  Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: Standard development and consideration of matrix effects , 2011 .

[51]  Jin-Hui Yang,et al.  Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for tectonic evolution of the Yangtze Block , 2010 .

[52]  J. Stix,et al.  Sulphide magma as a source of metals in arc-related magmatic hydrothermal ore fluids , 2010 .

[53]  D. Groves,et al.  Iron Oxide Copper-Gold (IOCG) Deposits through Earth History: Implications for Origin, Lithospheric Setting, and Distinction from Other Epigenetic Iron Oxide Deposits , 2010 .

[54]  Patrick J. Williams,et al.  Sources of ore fluid components in IOCG deposits , 2010 .

[55]  R. Large,et al.  Study of Trace Element Zonation in Vent Chimneys from the Silurian Yaman-Kasy Volcanic-Hosted Massive Sulfide Deposit (Southern Urals, Russia) Using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) , 2009 .

[56]  Dieter Brems,et al.  Metallogenesis of the Nkana copper–cobalt South Orebody, Zambia , 2009 .

[57]  S. Utsunomiya,et al.  Nanoscale “liquid” inclusions of As-Fe-S in arsenian pyrite , 2009 .

[58]  Shan Gao,et al.  In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard , 2008 .

[59]  C. R. S. Filho,et al.  Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide-copper-gold deposit, Carajas Mineral Province, Brazil , 2008 .

[60]  L. Monteiro,et al.  Tourmaline B-isotopes fingerprint marine evaporites as the source of high-salinity ore fluids in iron oxide copper-gold deposits, Carajás Mineral Province (Brazil) , 2008 .

[61]  R. Ewing,et al.  A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance , 2008 .

[62]  E. Bastrakov,et al.  Fluid Evolution and Origins of Iron Oxide Cu-Au Prospects in the Olympic Dam District, Gawler Craton, South Australia , 2007 .

[63]  F. Robert,et al.  Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia , 2007 .

[64]  Tonggang Zhang,et al.  Sulfur and carbon isotope records from 1700 to 800 Ma carbonates of the Jixian section, northern China: Implications for secular isotope variations in Proterozoic seawater and relationships to global supercontinental events , 2007 .

[65]  G. Olivo,et al.  The Ni-Cu-PGE sulfide ores of the komatiite-hosted Fortaleza de Minas deposit, Brazil: Evidence of hydrothermal remobilization , 2007 .

[66]  Geordie Mark,et al.  Mid-crustal fluid mixing in a Proterozoic Fe oxide–Cu–Au deposit, Ernest Henry, Australia: Evidence from Ar, Kr, Xe, Cl, Br, and I , 2007 .

[67]  PBrBn Bavr Crystal chemistry and crystallography of some minerals within the pyrite group , 2007 .

[68]  Peter J. Pollard,et al.  An intrusion-related origin for Cu–Au mineralization in iron oxide–copper–gold (IOCG) provinces , 2006 .

[69]  R. Ewing,et al.  Solubility of gold in arsenian pyrite , 2005 .

[70]  M. Barton,et al.  Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin , 2005 .

[71]  R. Sillitoe Iron oxide-copper-gold deposits: an Andean view , 2003 .

[72]  K. Hattori,et al.  Contribution of mafic melt to porphyry copper mineralization: evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA , 2001 .

[73]  P. Pollard Sodic(–calcic) alteration in Fe-oxide–Cu–Au districts: an origin via unmixing of magmatic H2O–CO2–NaCl ± CaCl2–KCl fluids , 2001 .

[74]  David A. Johnson ALTERNATIVE BRINE SOURCES FOR Fe-OXIDE(-Cu-Au) SYSTEMS: IMPLICATIONS FOR HYDROTHERMAL ALTERATION AND METALS , 2000 .

[75]  R. Frietsch,et al.  Early proterozoic Cu(Au) and Fe ore deposits associated with regional NaCl metasomatism in northern Fennoscandia , 1997 .

[76]  N. Oreskes,et al.  Origin of hydrothermal fluids at Olympic Dam; preliminary results from fluid inclusions and stable isotopes , 1992 .

[77]  A. Lasaga,et al.  Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems , 1982 .

[78]  H. Ohmoto Isotopes of sulfur and carbon , 1979 .

[79]  M. Yamamoto Relationship between Se/S and sulfur isotope ratios of hydrothermal sulfide minerals , 1976 .

[80]  H. Ohmoto Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits , 1972 .