Singular‐value (and eigenvalue) distribution and Krylov preconditioning of sequences of sampling matrices approximating integral operators
暂无分享,去创建一个
Stefano Serra Capizzano | Malik Zaka Ullah | A. S. Al-Fhaid | Debora Sesana | S. Capizzano | A. Al-Fhaid | Debora Sesana | M. Z. Ullah
[1] Stefano Serra-Capizzano,et al. The GLT class as a generalized Fourier analysis and applications , 2006 .
[2] Lothar Reichel,et al. Fast solution methods for fredholm integral equations of the second kind , 1990 .
[3] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[4] Stefano Serra Capizzano,et al. A note on the (regularizing) preconditioning of g-Toeplitz sequences via g-circulants , 2012, J. Comput. Appl. Math..
[5] P. Anselone,et al. Collectively Compact Operator Approximation Theory and Applications to Integral Equations , 1971 .
[6] A. Böttcher,et al. Introduction to Large Truncated Toeplitz Matrices , 1998 .
[7] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[8] R. Cooke. Real and Complex Analysis , 2011 .
[9] Leonid Golinskii,et al. The asymptotic properties of the spectrum of nonsymmetrically perturbed Jacobi matrix sequences , 2007, J. Approx. Theory.
[10] Radakovič. The theory of approximation , 1932 .
[11] H. Engl,et al. Regularization of Inverse Problems , 1996 .
[12] S. Serra Capizzano,et al. Distribution results on the algebra generated by Toeplitz sequences: a finite-dimensional approach , 2001 .
[13] Stefano Serra-Capizzano,et al. Tools for the eigenvalue distribution in a non-Hermitian setting , 2009 .
[14] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[15] Stefano Serra Capizzano,et al. Spectral Features and Asymptotic Properties for g-Circulants and g-Toeplitz Sequences , 2010, SIAM J. Matrix Anal. Appl..
[16] Stefano Serra-Capizzano,et al. Stability of the notion of approximating class of sequences and applications , 2008 .
[17] S. Capizzano. Spectral behavior of matrix sequences and discretized boundary value problems , 2001 .
[18] Arno B. J. Kuijlaars,et al. Superlinear Convergence of Conjugate Gradients , 2001, SIAM J. Numer. Anal..
[19] S. Serra Capizzano,et al. Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations , 2003 .
[20] Raymond H. Chan,et al. Preconditioners for Wiener--Hopf Equations with High-Order Quadrature Rules , 1997 .
[21] E. E. Tyrtyshnikov. A unifying approach to some old and new theorems on distribution and clustering , 1996 .
[22] O. Axelsson,et al. Finite element solution of boundary value problemes - theory and computation , 2001, Classics in applied mathematics.
[23] Arno B. J. Kuijlaars,et al. Convergence Analysis of Krylov Subspace Iterations with Methods from Potential Theory , 2006, SIAM Rev..
[24] Gene H. Golub,et al. How to Deduce a Proper Eigenvalue Cluster from a Proper Singular Value Cluster in the Nonnormal Case , 2005, SIAM J. Matrix Anal. Appl..