Probabilistic and Single-Subject Retinotopic Maps Reveal the Topographic Organization of Face Patches in the Macaque Cortex

Face perception is crucial to survival among social primates. It has been suggested that a group of extrastriate cortical regions responding more strongly to faces than to nonface objects is critical for face processing in primates. It is generally assumed that these regions are not retinotopically organized, as with human face-processing areas, showing foveal bias but lacking any organization with respect to polar angle. Despite many electrophysiological studies targeting monkey face patches, the retinotopic organization of these patches remains largely unclear. We have examined the relationship between cortical face patches and the topographic organization of extrastriate cortex using biologically relevant, phase-encoded retinotopic mapping stimuli in macaques. Single-subject fMRI results indicated a gradual shift from highly retinotopic to no topographic organization from posterior to anterior face patches in inferotemporal cortex. We also constructed a probabilistic retinotopic atlas of occipital and ventral extrastriate visual cortex. By comparing this probabilistic map to the locations of face patches at the group level, we showed that a previously identified posterior lateral temporal face patch (PL) is located within the posterior inferotemporal dorsal (PITd) retinotopic area. Furthermore, we identified a novel face patch posterior PL, which is located in retinotopically organized transitional area V4 (V4t). Previously published coordinates of human PITd coincide with the group-level occipital face area (OFA), according to a probabilistic map derived from a large population, implying a potential correspondence between monkey PL/PITd and human OFA/PITd. Furthermore, the monkey middle lateral temporal face patch (ML) shows consistent foveal biases but no obvious polar-angle structure. In contrast, middle fundus temporal (MF), anterior temporal and prefrontal monkey face patches lacked topographic organization.

[1]  S. Zeki,et al.  Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. , 1971, Brain research.

[2]  S. Zeki Cortical projections from two prestriate areas in the monkey. , 1971, Brain research.

[3]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[4]  C. Bruce,et al.  Primate frontal eye fields. I. Single neurons discharging before saccades. , 1985, Journal of neurophysiology.

[5]  M. Hasselmo,et al.  The role of expression and identity in the face-selective responses of neurons in the temporal visual cortex of the monkey , 1989, Behavioural Brain Research.

[6]  Leslie G. Ungerleider,et al.  Visual topography of area TEO in the macaque , 1991, The Journal of comparative neurology.

[7]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[8]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[9]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[10]  M I Sereno,et al.  Analysis of retinotopic maps in extrastriate cortex. , 1994, Cerebral cortex.

[11]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[12]  J. Schall Visuomotor Areas of the Frontal Lobe , 1997 .

[13]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[14]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[15]  M. Segraves,et al.  Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades. , 1999, Journal of neurophysiology.

[16]  E. Halgren,et al.  Location of human face‐selective cortex with respect to retinotopic areas , 1999, Human brain mapping.

[17]  D. V. van Essen,et al.  Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto‐occipital cortex , 2000, The Journal of comparative neurology.

[18]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[19]  Muge M. Bakircioglu,et al.  Mapping visual cortex in monkeys and humans using surface-based atlases , 2001, Vision Research.

[20]  Talma Hendler,et al.  Center–periphery organization of human object areas , 2001, Nature Neuroscience.

[21]  G. Orban,et al.  Visual Motion Processing Investigated Using Contrast Agent-Enhanced fMRI in Awake Behaving Monkeys , 2001, Neuron.

[22]  Talma Hendler,et al.  Eccentricity Bias as an Organizing Principle for Human High-Order Object Areas , 2002, Neuron.

[23]  Jeffrey D Schall,et al.  The neural selection and control of saccades by the frontal eye field. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[24]  Sabine Kastner,et al.  Neurons with radial receptive fields in monkey area V4A: evidence of a subdivision of prelunate gyrus based on neuronal response properties , 2002, Experimental Brain Research.

[25]  N. Logothetis,et al.  Visual Areas in Macaque Cortex Measured Using Functional Magnetic Resonance Imaging , 2002, The Journal of Neuroscience.

[26]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[27]  Olivier P. Faugeras,et al.  The Retinotopic Organization of Primate Dorsal V4 and Surrounding Areas: A Functional Magnetic Resonance Imaging Study in Awake Monkeys , 2003, The Journal of Neuroscience.

[28]  Doris Y. Tsao,et al.  Faces and objects in macaque cerebral cortex , 2003, Nature Neuroscience.

[29]  C. Gross,et al.  Representations of faces and body parts in macaque temporal cortex: a functional MRI study. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Hisao Nishijo,et al.  Differential characteristics of face neuron responses within the anterior superior temporal sulcus of macaques. , 2005, Journal of neurophysiology.

[31]  Brian A Wandell,et al.  Visual field map clusters in human cortex , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[32]  Alex R. Wade,et al.  Visual field maps and stimulus selectivity in human ventral occipital cortex , 2005, Nature Neuroscience.

[33]  Iwona Stepniewska,et al.  Reappraisal of DL/V4 boundaries based on connectivity patterns of dorsolateral visual cortex in macaques. , 2005, Cerebral cortex.

[34]  Doris Y. Tsao,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006, Science.

[35]  Joseph B. Mandeville,et al.  Characterization of event-related designs using BOLD and IRON fMRI , 2006, NeuroImage.

[36]  G. Orban,et al.  Charting the Lower Superior Temporal Region, a New Motion-Sensitive Region in Monkey Superior Temporal Sulcus , 2006, The Journal of Neuroscience.

[37]  D. Heeger,et al.  Two Retinotopic Visual Areas in Human Lateral Occipital Cortex , 2006, The Journal of Neuroscience.

[38]  M. Giese,et al.  Norm-based face encoding by single neurons in the monkey inferotemporal cortex , 2006, Nature.

[39]  P. Roelfsema,et al.  Bottom-Up Dependent Gating of Frontal Signals in Early Visual Cortex , 2008, Science.

[40]  Leslie G. Ungerleider,et al.  Perception of emotional expressions is independent of face selectivity in monkey inferior temporal cortex , 2008, Proceedings of the National Academy of Sciences.

[41]  Robert Desimone,et al.  Cortical connections of area V4 in the macaque. , 2000, Cerebral cortex.

[42]  Doris Y. Tsao,et al.  Patches of face-selective cortex in the macaque frontal lobe , 2008, Nature Neuroscience.

[43]  Doris Y. Tsao,et al.  Patches with Links: A Unified System for Processing Faces in the Macaque Temporal Lobe , 2008, Science.

[44]  Doris Y. Tsao,et al.  Comparing face patch systems in macaques and humans , 2008, Proceedings of the National Academy of Sciences.

[45]  Benjamin D. Singer,et al.  Retinotopic Organization of Human Ventral Visual Cortex , 2009, The Journal of Neuroscience.

[46]  W. Vanduffel,et al.  Visual Field Map Clusters in Macaque Extrastriate Visual Cortex , 2009, The Journal of Neuroscience.

[47]  C. Gross,et al.  Neural representations of faces and body parts in macaque and human cortex: a comparative FMRI study. , 2009, Journal of neurophysiology.

[48]  Doris Y. Tsao,et al.  A face feature space in the macaque temporal lobe , 2009, Nature Neuroscience.

[49]  R. Tootell,et al.  An anterior temporal face patch in human cortex, predicted by macaque maps , 2009, Proceedings of the National Academy of Sciences.

[50]  Janita Turchi,et al.  Pulvinar Inactivation Disrupts Selection of Movement Plans , 2010, The Journal of Neuroscience.

[51]  G. Orban,et al.  The Retinotopic Organization of the Human Middle Temporal Area MT/V5 and Its Cortical Neighbors , 2010, The Journal of Neuroscience.

[52]  G. Orban,et al.  Searching for a salient target involves frontal regions. , 2010, Cerebral cortex.

[53]  Doris Y. Tsao,et al.  Functional Compartmentalization and Viewpoint Generalization Within the Macaque Face-Processing System , 2010, Science.

[54]  M. Corbetta,et al.  Topographic organization of macaque area LIP , 2010, Proceedings of the National Academy of Sciences.

[55]  W. Vanduffel,et al.  fMRI of Cocaine Self-Administration in Macaques Reveals Functional Inhibition of Basal Ganglia , 2011, Neuropsychopharmacology.

[56]  Nikola T. Markov,et al.  Weight Consistency Specifies Regularities of Macaque Cortical Networks , 2010, Cerebral cortex.

[57]  N. Logothetis,et al.  fMRI of the Face-Processing Network in the Ventral Temporal Lobe of Awake and Anesthetized Macaques , 2011, Neuron.

[58]  M. Pinsk,et al.  Visuotopic Organization of Macaque Posterior Parietal Cortex: A Functional Magnetic Resonance Imaging Study , 2011, The Journal of Neuroscience.

[59]  R. Andersen,et al.  Functional imaging reveals rapid reorganization of cortical activity after parietal inactivation in monkeys , 2012, Proceedings of the National Academy of Sciences.

[60]  G. Orban,et al.  The representation of dynamic facial expressions in the monkey frontal lobe , 2012 .

[61]  John W. Harwell,et al.  Cortical parcellations of the macaque monkey analyzed on surface-based atlases. , 2012, Cerebral cortex.

[62]  Wim Vanduffel,et al.  Stimulus representations in body-selective regions of the macaque cortex assessed with event-related fMRI , 2012, NeuroImage.

[63]  B. Keil,et al.  An implanted 8-channel array coil for high-resolution macaque MRI at 3T , 2012, NeuroImage.

[64]  Bruce R. Rosen,et al.  Optogenetically Induced Behavioral and Functional Network Changes in Primates , 2012, Current Biology.

[65]  Bevil R. Conway,et al.  Toward a Unified Theory of Visual Area V4 , 2012, Neuron.

[66]  Elias B. Issa,et al.  Precedence of the Eye Region in Neural Processing of Faces , 2012, The Journal of Neuroscience.

[67]  Béatrice de Gelder,et al.  Dissimilar processing of emotional facial expressions in human and monkey temporal cortex , 2013, NeuroImage.

[68]  Andrew D. Engell,et al.  Probabilistic atlases for face and biological motion perception: An analysis of their reliability and overlap , 2013, NeuroImage.

[69]  Wim Vanduffel,et al.  The Retinotopic Organization of Macaque Occipitotemporal Cortex Anterior to V4 and Caudoventral to the Middle Temporal (MT) Cluster , 2014, The Journal of Neuroscience.