Spectral Bioindicators of Photosynthetic Efciency and Vegetation Stress

[1]  F. Baret,et al.  Potentials and limits of vegetation indices for LAI and APAR assessment , 1991 .

[2]  Yuxin Miao,et al.  Combining chlorophyll meter readings and high spatial resolution remote sensing images for in-season site-specific nitrogen management of corn , 2008, Precision Agriculture.

[3]  John R. Miller,et al.  Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .

[4]  José M. Matías,et al.  Functional statistical techniques applied to vine leaf water content determination , 2010, Math. Comput. Model..

[5]  Francisca López Granados Weed detection for site-specific weed management: Mapping and real-time approaches , 2011 .

[6]  P. Thenkabail,et al.  Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics , 2000 .

[7]  Morris Goldberg,et al.  Hierarchy in Picture Segmentation: A Stepwise Optimization Approach , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  George Alan Blackburn,et al.  Wavelet decomposition of hyperspectral data: a novel approach to quantifying pigment concentrations in vegetation , 2007 .

[9]  Georg Bareth,et al.  Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages , 2010, Precision Agriculture.

[10]  Emmanuel Arzuaga-Cruz,et al.  Integration of spatial and spectral information by means of unsupervised extraction and classification for homogenous objects applied to multispectral and hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[11]  J. Schjoerring,et al.  Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression , 2003 .

[12]  John R. Miller,et al.  Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy , 2005 .

[13]  L. Tian,et al.  A Review on Remote Sensing of Weeds in Agriculture , 2004, Precision Agriculture.

[14]  John R. Miller,et al.  Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture , 2002 .

[15]  K. Staenz,et al.  Potential of Hyperion EO-1 hyperspectral data for wheat crop chlorophyll content estimation , 2008 .

[16]  Francisca López-Granados,et al.  Weed detection for site-specific weed management: mapping and real-time approaches , 2011 .

[17]  John R. Miller,et al.  Remote Estimation of Crop Chlorophyll Content Using Spectral Indices Derived From Hyperspectral Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Sushma Panigrahy,et al.  Use of hyperspectral data to assess the effects of different nitrogen applications on a potato crop , 2007, Precision Agriculture.

[19]  Y. Govaerts Correction of the Meteosat-5 and -6 radiometer solar channel spectral response with the Meteosat-7 sensor spectral characteristics , 1999 .

[20]  Arnon Karnieli,et al.  Wheat and maize monitoring based on ground spectral measurements and multivariate data analysis , 2007 .

[21]  Elizabeth Pattey,et al.  Variability of seasonal CASI image data products and potential application for management zone delineation for precision agriculture , 2005 .

[22]  S. Wold,et al.  The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses , 1984 .

[23]  George Alan Blackburn,et al.  Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis. , 2008 .

[24]  Y. Cohen,et al.  Use of thermal and visible imagery for estimating crop water status of irrigated grapevine. , 2006, Journal of experimental botany.

[25]  R. M. Lark,et al.  Forming Spatially Coherent Regions by Classification of Multi-Variate Data: An Example from the Analysis of Maps of Crop Yield , 1998, Int. J. Geogr. Inf. Sci..

[26]  M. Ashton,et al.  Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications , 2004 .

[27]  Prasad S. Thenkabail,et al.  Evaluation of Narrowband and Broadband Vegetation Indices for Determining Optimal Hyperspectral Wavebands for Agricultural Crop Characterization , 2002 .

[28]  W. Cohen,et al.  Hyperspectral versus multispectral data for estimating leaf area index in four different biomes , 2004 .

[29]  Christian Nansen,et al.  Variogram Analysis of Hyperspectral Data to Characterize the Impact of Biotic and Abiotic Stress of Maize Plants and to Estimate Biofuel Potential , 2010, Applied spectroscopy.

[30]  A. Skidmore,et al.  Leaf Area Index derivation from hyperspectral vegetation indicesand the red edge position , 2009 .

[31]  D. Smart,et al.  Evaluation of Hyperspectral Reflectance Indexes to Detect Grapevine Water Status in Vineyards , 2007, American Journal of Enology and Viticulture.

[32]  Michael E. Schaepman,et al.  Estimating canopy water content using hyperspectral remote sensing data , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[33]  W. R. Windham,et al.  Partial Least Squares Regression of Hyperspectral Images for Contaminant Detection on Poultry Carcasses , 2006 .

[34]  P. Groves,et al.  Methodology For Hyperspectral Band Selection , 2004 .

[35]  J. Moreno,et al.  Retrieval of chlorophyll content and LAI of crops using hyperspectral techniques: application to PROBA/CHRIS data , 2008 .

[36]  Paul Scheunders,et al.  Generic wavelet-based hyperspectral classification applied to vegetation stress detection , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Jon Atli Benediktsson,et al.  Recent Advances in Techniques for Hyperspectral Image Processing , 2009 .

[38]  N. Elliott,et al.  Original papers: Differentiating stress induced by greenbugs and Russian wheat aphids in wheat using remote sensing , 2009 .

[39]  A. Gitelson Wide Dynamic Range Vegetation Index for remote quantification of biophysical characteristics of vegetation. , 2004, Journal of plant physiology.

[40]  L. Godfrey,et al.  Remotely Sensing Arthropod and Nutrient Stressed Plants: A Case Study with Nitrogen and Cotton Aphid (Hemiptera: Aphididae) , 2010, Environmental entomology.

[41]  J. Araus,et al.  Spectral vegetation indices as nondestructive tools for determining durum wheat yield. , 2000 .

[42]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .