Abductive Reasoning with a Large Knowledge Base for Discourse Processing

This paper presents a discourse processing framework based on weighted abduction. We elaborate on ideas described in Hobbs et al. (1993) and implement the abductive inference procedure in a system called Mini-TACITUS. Particular attention is paid to constructing a large and reliable knowledge base for supporting inferences. For this purpose we exploit such lexical-semantic resources as WordNet and FrameNet. We test the proposed procedure and the obtained knowledge base on the Recognizing Textual Entailment task using the data sets from the RTE-2 challenge for evaluation. In addition, we provide an evaluation of the semantic role labeling produced by the system taking the Frame-Annotated Corpus for Textual Entailment as a gold standard.

[1]  Jerry R. Hobbs Ontological Promiscuity , 1985, ACL.

[2]  Michael C. McCord,et al.  Slot Grammar: A System for Simpler Construction of Practical Natural Language Grammars , 1989, Natural Language and Logic.

[3]  Alessandro Moschitti,et al.  Syntactic/Semantic Structures for Textual Entailment Recognition , 2010, NAACL.

[4]  Jerry R. Hobbs,et al.  Coreference Resolution with ILP-based Weighted Abduction , 2012, COLING.

[5]  Stefan Thater,et al.  Assessing the impact of frame semantics on textual entailment , 2009, Natural Language Engineering.

[6]  Jerry R. Hobbs,et al.  Learning from Reading Syntactically Complex Biology Texts , 2007, AAAI Spring Symposium: Logical Formalizations of Commonsense Reasoning.

[7]  Roy Bar-Haim,et al.  The Second PASCAL Recognising Textual Entailment Challenge , 2006 .

[8]  Jerry R. Hobbs,et al.  Interpretation as Abduction , 1993, Artif. Intell..

[9]  Ido Dagan,et al.  Recognizing textual entailment: Rational, evaluation and approaches – Erratum , 2010, Natural Language Engineering.

[10]  David L. Davidson,et al.  The Logical Form of Action Sentences , 2001 .

[11]  Ekaterina Ovchinnikova,et al.  Integration of World Knowledge for Natural Language Understanding , 2012, Atlantis Thinking Machines.

[12]  Michael C. McCord IBM Research Report Using Slot Grammar , 2010 .

[13]  Mirella Lapata,et al.  Using Semantic Roles to Improve Question Answering , 2007, EMNLP.

[14]  Christiane Fellbaum,et al.  On the Role of Lexical and World Knowledge in RTE3 , 2007, ACL-PASCAL@ACL.

[15]  Mark E. Stickel,et al.  A prolog technology theorem prover: Implementation by an extended prolog compiler , 1986, Journal of Automated Reasoning.

[16]  Peter Clark,et al.  The Seventh PASCAL Recognizing Textual Entailment Challenge , 2011, TAC.

[17]  Katrin Erk,et al.  A WordNet Detour to FrameNet , 2005 .

[18]  Zellig S. Harris,et al.  Distributional Structure , 1954 .

[19]  Noah A. Smith,et al.  SEMAFOR 1.0: A Probabilistic Frame-Semantic Parser , 2010 .

[20]  Michael C. McCord,et al.  Deep parsing in Watson , 2012, IBM J. Res. Dev..

[21]  Josef Ruppenhofer,et al.  FrameNet II: Extended theory and practice , 2006 .

[22]  Marco Pennacchiotti,et al.  FATE: a FrameNet-Annotated Corpus for Textual Entailment , 2008, LREC.

[23]  Konstantina Garoufi Towards a Better Understanding of Applied Textual Entailment: Annotation and Evaluation of the RTE-2 Dataset , 2007 .

[24]  Ido Dagan,et al.  Recognizing textual entailment: Rational, evaluation and approaches , 2009 .

[25]  Kentaro Inui,et al.  ILP-Based Reasoning for Weighted Abduction , 2011, Plan, Activity, and Intent Recognition.

[26]  Nicholas Rescher,et al.  The Logic of Decision and Action , 1967 .

[27]  Anselmo Peñas,et al.  Unsupervised Acquisition of Axioms to Paraphrase Noun Compounds and Genitives , 2012, CICLing.

[28]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[29]  Stefano Borgo,et al.  Data-Driven and Ontological Analysis of FrameNet for Natural Language Reasoning , 2010, LREC.

[30]  B. Hammond Ontology , 2004, Lawrence Booth’s Book of Visions.