Learning Pain from Emotion: Transferred HoT Data Representation for Pain Intensity Estimation

Automatic monitoring for the assessment of pain can significantly improve the psychological comfort of patients. Recently introduced databases with expert annotation opened the way for pain intensity estimation from facial analysis. In this contribution, pivotal face elements are identified using the Histograms of Topographical features (HoT) which are a generalization of the topographical primal sketch. In order to improve the discrimination between different pain intensity values and respectively the generalization with respect to the monitored persons, we transfer data representation from the emotion oriented Cohn-Kanade database to the UNBC McMaster Shoulder Pain database.

[1]  Gwen Littlewort,et al.  Faces of pain: automated measurement of spontaneousallfacial expressions of genuine and posed pain , 2007, ICMI '07.

[2]  Korris Fu-Lai Chung,et al.  Transfer Spectral Clustering , 2012, ECML/PKDD.

[3]  Jeffrey F. Cohn,et al.  Painful monitoring: Automatic pain monitoring using the UNBC-McMaster shoulder pain expression archive database , 2012, Image Vis. Comput..

[4]  Thomas G. Dietterich,et al.  Principal Curvature-Based Region Detector for Object Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Rajat Raina,et al.  Self-taught learning: transfer learning from unlabeled data , 2007, ICML '07.

[6]  Jun Wang,et al.  Static topographic modeling for facial expression recognition and analysis , 2007, Comput. Vis. Image Underst..

[7]  Jeffrey F. Cohn,et al.  Painful data: The UNBC-McMaster shoulder pain expression archive database , 2011, Face and Gesture 2011.

[8]  K. Prkachin,et al.  The structure, reliability and validity of pain expression: Evidence from patients with shoulder pain , 2008, PAIN.

[9]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[10]  Alejandro F. Frangi,et al.  Muliscale Vessel Enhancement Filtering , 1998, MICCAI.

[11]  Max A. Viergever,et al.  Scale and the differential structure of images , 1992, Image Vis. Comput..

[12]  Takeo Kanade,et al.  Comprehensive database for facial expression analysis , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[13]  Maja Pantic,et al.  Continuous Pain Intensity Estimation from Facial Expressions , 2012, ISVC.

[14]  A. Akobeng,et al.  THE STRUCTURE, RELIABILITY AND VALIDITY OF THE IMPACT QUESTIONNAIRE TO MEASURE QUALITY OF LIFE IN CHILDREN WITH INFLAMMATORY BOWEL DISEASE: PG2-19 , 2005 .

[15]  Zakia Hammal,et al.  Pain monitoring: A dynamic and context-sensitive system , 2012, Pattern Recognit..

[16]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[17]  Jiawei Han,et al.  Spectral Regression for Efficient Regularized Subspace Learning , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[18]  Zhihong Zeng,et al.  A Survey of Affect Recognition Methods: Audio, Visual, and Spontaneous Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  R. Haralick,et al.  The Topographic Primal Sketch , 1983 .

[20]  Rajat Raina,et al.  Self-taught learning , 2009 .

[21]  Ayoub Al-Hamadi,et al.  Towards Pain Monitoring: Facial Expression, Head Pose, a new Database, an Automatic System and Remaining , 2013, BMVC.

[22]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[23]  K. Craig,et al.  Social influences and the communication of pain , 2004 .

[24]  Hwann-Tzong Chen,et al.  Histogram-based interest point detectors , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  R. M. Vazquez The Checklist Manifesto How to Get Things Right , 2011 .

[26]  Peter H. Tu,et al.  Person-specific expression recognition with transfer learning , 2012, 2012 19th IEEE International Conference on Image Processing.

[27]  Binoy Pinto,et al.  Speeded Up Robust Features , 2011 .