Locking-free isogeometric collocation formulation for three-dimensional geometrically exact shear-deformable beams with arbitrary initial curvature

Abstract This paper presents a displacement-based and a mixed isogeometric collocation formulations for three-dimensional geometrically exact shear-deformable beams with arbitrarily curved initial geometry. Strong forms of both formulations are consistently linearized with respect to the underlying configuration manifold. High efficiency is achieved by using a geometrically consistent kinematic model in which incremental rotations are parametrized through the spatial rotation vector. Several numerical tests demonstrate that the proposed mixed formulation is totally locking-free for any choice of approximation degree. Mixed formulation also exhibits higher robustness in the incremental-iterative algorithm. Elimination of shear locking and low computational cost assured by the combination of isogeometric collocation with a consistent kinematic model result in a very efficient, accurate and geometrically powerful method able to handle geometrically complex beam problems.

[1]  E. Stein,et al.  On the parametrization of finite rotations in computational mechanics: A classification of concepts with application to smooth shells , 1998 .

[2]  Ignacio Romero,et al.  A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations , 2008 .

[3]  Leopoldo Greco,et al.  B-Spline interpolation of Kirchhoff-Love space rods , 2013 .

[4]  F. Auricchio,et al.  On the geometrically exact beam model: A consistent, effective and simple derivation from three-dimensional finite-elasticity , 2008 .

[5]  Giancarlo Sangalli,et al.  Optimal-order isogeometric collocation at Galerkin superconvergent points , 2016, 1609.01971.

[6]  Hector Gomez,et al.  Accurate, efficient, and (iso)geometrically flexible collocation methods for phase-field models , 2014, J. Comput. Phys..

[7]  J. Argyris An excursion into large rotations , 1982 .

[8]  Z. Li,et al.  A co-rotational formulation for 3D beam element using vectorial rotational variables , 2006 .

[9]  P. Wriggers,et al.  Isogeometric large deformation frictionless contact using T-splines , 2014 .

[10]  Nicholas Fantuzzi,et al.  A new doubly-curved shell element for the free vibrations of arbitrarily shaped laminated structures based on Weak Formulation IsoGeometric Analysis , 2017 .

[11]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[12]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[13]  Alessandro Reali,et al.  An isogeometric collocation approach for Bernoulli–Euler beams and Kirchhoff plates , 2015 .

[14]  Robert L. Taylor,et al.  On the role of frame-invariance in structural mechanics models at finite rotations , 2002 .

[15]  F. Auricchio,et al.  Single-variable formulations and isogeometric discretizations for shear deformable beams , 2015 .

[16]  Claudio Borri,et al.  Two shape parametrizations for structural optimization of triangular shells , 2016 .

[17]  Timon Rabczuk,et al.  An isogeometric collocation method using superconvergent points , 2015 .

[18]  A. Ibrahimbegovic,et al.  Computational aspects of vector-like parametrization of three-dimensional finite rotations , 1995 .

[19]  Debasish Roy,et al.  Consistent quaternion interpolation for objective finite element approximation of geometrically exact beam , 2008 .

[20]  Habibou Maitournam,et al.  Improved numerical integration for locking treatment in isogeometric structural elements, Part I: Beams , 2014 .

[21]  T. Hughes,et al.  A Simple Algorithm for Obtaining Nearly Optimal Quadrature Rules for NURBS-based Isogeometric Analysis , 2012 .

[22]  Gordan Jelenić,et al.  INTERPOLATION OF ROTATIONAL VARIABLES IN NONLINEAR DYNAMICS OF 3D BEAMS , 1998 .

[23]  Alain Combescure,et al.  Locking free isogeometric formulations of curved thick beams , 2012 .

[24]  Jari Mäkinen,et al.  Critical study of Newmark-scheme on manifold of finite rotations , 2001 .

[25]  Josef Kiendl,et al.  An isogeometric collocation method for frictionless contact of Cosserat rods , 2017 .

[26]  H. Nguyen-Xuan,et al.  An extended isogeometric thin shell analysis based on Kirchhoff-Love theory , 2015 .

[27]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[28]  Ignacio Romero,et al.  The interpolation of rotations and its application to finite element models of geometrically exact rods , 2004 .

[29]  Thomas J. R. Hughes,et al.  Consistent linearization in mechanics of solids and structures , 1978 .

[30]  K. C. Gupta,et al.  An historical note on finite rotations , 1989 .

[31]  Habibou Maitournam,et al.  Selective and reduced numerical integrations for NURBS-based isogeometric analysis , 2015 .

[32]  J. Mäkinen Total Lagrangian Reissner's geometrically exact beam element without singularities , 2007 .

[33]  Marcelo Epstein,et al.  The Geometrical Language of Continuum Mechanics , 2010 .

[34]  Alessandro Reali,et al.  Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods , 2012 .

[35]  Rakesh K. Kapania,et al.  On a geometrically exact curved/twisted beam theory under rigid cross-section assumption , 2003 .

[36]  Alessandro Reali,et al.  Isogeometric collocation methods for the Reissner–Mindlin plate problem , 2015 .

[37]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[38]  L. Heltai,et al.  A natural framework for isogeometric fluid–structure interaction based on BEM–shell coupling , 2017, 1702.04502.

[39]  A. Ibrahimbegovic On finite element implementation of geometrically nonlinear Reissner's beam theory: three-dimensional curved beam elements , 1995 .

[40]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[41]  Alessandro Reali,et al.  An Introduction to Isogeometric Collocation Methods , 2015 .

[42]  Leopoldo Greco,et al.  Consistent tangent operator for an exact Kirchhoff rod model , 2015 .

[43]  J. C. Simo,et al.  On the dynamics of finite-strain rods undergoing large motions a geometrically exact approach , 1988 .

[44]  Debasish Roy,et al.  A frame-invariant scheme for the geometrically exact beam using rotation vector parametrization , 2009 .

[45]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[46]  A. Ibrahimbegovic On the choice of finite rotation parameters , 1997 .

[47]  Alessandro Reali,et al.  AN ISO GEOMETRIC ANALYSIS APPROACH FOR THE STUDY OF STRUCTURAL VIBRATIONS , 2006 .

[48]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[49]  Enzo Marino,et al.  Isogeometric collocation for three-dimensional geometrically exact shear-deformable beams , 2016 .

[50]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[51]  M. Crisfield A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements , 1990 .

[52]  Peter Wriggers,et al.  Isogeometric contact: a review , 2014 .

[53]  Leopoldo Greco,et al.  An isogeometric implicit G1 mixed finite element for Kirchhoff space rods , 2016 .

[54]  Alessandro Reali,et al.  Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations , 2013 .

[55]  Adnan Ibrahimbegovic,et al.  Quadratically convergent direct calculation of critical points for 3d structures undergoing finite rotations , 2000 .

[56]  Ping Hu,et al.  Order reduction method for locking free isogeometric analysis of Timoshenko beams , 2016 .

[57]  M. Crisfield,et al.  Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[58]  Laura De Lorenzis,et al.  The variational collocation method , 2016 .

[59]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[60]  M. Géradin,et al.  A beam finite element non‐linear theory with finite rotations , 1988 .

[61]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[62]  Alessandro Reali,et al.  Assumed Natural Strain NURBS-based solid-shell element for the analysis of large deformation elasto-plastic thin-shell structures , 2015 .

[63]  K. Bathe,et al.  Large displacement analysis of three‐dimensional beam structures , 1979 .

[64]  Jari Mäkinen,et al.  Rotation manifold SO(3) and its tangential vectors , 2008 .

[65]  Dinar Camotim,et al.  On the differentiation of the Rodrigues formula and its significance for the vector‐like parameterization of Reissner–Simo beam theory , 2002 .

[66]  E. Dvorkin,et al.  On a non‐linear formulation for curved Timoshenko beam elements considering large displacement/rotation increments , 1988 .

[67]  J. F. Caseiro,et al.  On the Assumed Natural Strain method to alleviate locking in solid-shell NURBS-based finite elements , 2014 .

[68]  Alessandro Reali,et al.  Isogeometric analysis for sixth-order boundary value problems of gradient-elastic Kirchhoff plates , 2017 .

[69]  T. Hughes,et al.  Isogeometric collocation for elastostatics and explicit dynamics , 2012 .

[70]  Thomas J. R. Hughes,et al.  Isogeometric collocation for large deformation elasticity and frictional contact problems , 2015 .

[71]  Gordan Jelenić,et al.  Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics , 1999 .

[72]  Ignacio Romero,et al.  An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy–momentum conserving scheme in dynamics , 2002 .

[73]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[74]  Jean-Louis Batoz,et al.  On the role of geometrically exact and second-order theories in buckling and post-buckling analysis of three-dimensional beam structures , 1996 .

[75]  Roland Wüchner,et al.  Nonlinear isogeometric spatial Bernoulli Beam , 2016 .

[76]  Manfred Bischoff,et al.  Numerical efficiency, locking and unlocking of NURBS finite elements , 2010 .

[77]  John A. Evans,et al.  Isogeometric collocation: Neumann boundary conditions and contact , 2015 .

[78]  José Paulo Moitinho de Almeida,et al.  A hybrid-mixed finite element formulation for the geometrically exact analysis of three-dimensional framed structures , 2011 .

[79]  Sai-Kit Yeung,et al.  Isogeometric collocation methods for Cosserat rods and rod structures , 2017 .

[80]  Les A. Piegl,et al.  A menagerie of rational B-spline circles , 1989, IEEE Computer Graphics and Applications.

[81]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[82]  Alessandro Reali,et al.  Locking-free isogeometric collocation methods for spatial Timoshenko rods , 2013 .