The cost competitiveness of conifer stumps in the procurement of forest chips for fuel in Southern and Northern Finland.

The aim of this study was to evaluate cost competitiveness, at regional level, of various systems for stump transportation and grinding, and to compare the results to the procurement costs of delimbed stems from early thinnings at the stand and regional level. The accumulation and procurement costs of stumps and delimbed stems were estimated within a 100-kilometer radius from two power plants located in Kouvola and in Kajaani. The analyses were performed as simulated treatments in clear cuts and thinnings of young stands, using existing productivity and cost functions, alternative ash percentages for stump wood, and yield calculations based on the forest industry regeneration felling stand data and the sample plots data of the National Forest Inventory of Finland. The results were expressed as Euros per solid cubic meter (€ m–3) and Euros per megawatt hour (€ MWh–1). The results highlight the need to improve stump fuel quality and increase the heating value. The procurement cost of stumps was about 1 € MWh–1 lower in Kouvola compared to Kajaani, when using conceivable ash content of 6% for stumps ground at the plant, and ash content of 1.5% for stumps pre-ground at the roadside landing. The procurement costs of stumps were, on average, 0.55 € MWh–1 lower compared to delimbed stems in Kouvola, and on average 0.6 € MWh–1 higher in Kajaani. Pre-grinding and integrated screening is a feasible way to guarantee the fuel quality expressed as ash content already at roadside landings, but the procurement costs are higher compared to grinding stumps at the plant, when the ash content of ground stumps is 6% or less.

[1]  Jaakko Heinonen,et al.  Characteristics and time consumption of timber trucking in Finland , 2007 .

[2]  Bernd Möller,et al.  Analysing transport costs of Danish forest wood chip resources by means of continuous cost surfaces , 2007 .

[3]  Juha Laitila,et al.  Harvesting Technology and the Cost of Fuel Chips from Early Thinnings , 2008 .

[4]  V. Lazdāns,et al.  PRODUCTIVITY AND COSTS OF STUMP HARVESTING FOR BIOENERGY PRODUCTION IN LATVIAN CONDITIONS , 2009 .

[5]  A. Asikainen,et al.  Hakkuutähdehakkeen kustannustekijät ja suurimittakaavaisen hankinnan logistiikka , 2001 .

[6]  M. Sirén,et al.  Pienet hakkuukoneet ja korjuri rämemännikön talvikorjuussa , 1970 .

[7]  Kalle Kärhä,et al.  Industrial supply chains and production machinery of forest chips in Finland , 2011 .

[8]  A. Asikainen 22: Discrete-event simulation of mechanized wood harvesting systems [chipping] , 1994 .

[9]  H. Ovaskainen Timber harvester operators’ working technique in first thinning and the importance of cognitive abilities on work productivity , 2009 .

[10]  Natascia Magagnotti,et al.  Harvesting and Transport of Root Biomass from Fast-growing Poplar Plantations , 2005 .

[11]  Per-Anders Hansson,et al.  Effects of Supply Chain Strategy on Stump Fuel Cost: A Simulation Approach , 2014 .

[12]  Torque required to twist and cut loose Scots pine stumps , 2012 .

[13]  W. Dale Greene,et al.  In-wood grinding and screening of forest residues for biomass feedstock applications. , 2013 .

[14]  Juha Laitila,et al.  Methodology for choice of harvesting system for energy wood from early thinning , 2012 .

[15]  Frank Thomas Purfürst,et al.  Learning Curves of Harvester Operators , 2010 .

[16]  Juha Laitila,et al.  Truck Transportation and Chipping Productivity of Whole Trees and Delimbed Energy Wood in Finland , 2012 .

[17]  Kalle Kärhä,et al.  Effects of subsidies on the profitability of energy wood production of wood chips from early thinnings in Finland , 2011 .

[18]  Anders Eriksson,et al.  Simulation-based evaluation of supply chains for stump fuel , 2014 .

[19]  Tomas Nordfjell,et al.  Forces Required to Vertically Uproot Tree Stumps , 2010 .

[20]  Raida Jirjis,et al.  Fuel quality of Norway spruce stumps – influence of harvesting technique and storage method , 2011 .

[21]  Stephen W. Searcy,et al.  Economic and energy evaluation of a logistics system based on biomass modules. , 2012 .

[22]  Kari Väätäinen,et al.  Puutavaran maantiekuljetusten kehittämispyrkimyksiä Suomessa ja Ruotsissa , 2012 .

[23]  Gunnar Eriksson,et al.  The state of the art in woody biomass comminution and sorting in Northern Europe , 2013 .

[24]  A. Asikainen,et al.  Metsähakkeen hankinta- ja toimituslogistiikan haasteet ja kehittämistarpeet , 2011 .

[25]  Ola Lindroos,et al.  Scrutinizing the Theory of Comparative Time Studies with Operator as a Block Effect , 2010 .

[26]  Jouni Pykäläinen,et al.  Using the ComBio decision support system to assess whether energy wood and/or pulpwood should be harvested in young forests , 2014 .

[27]  Juha Laitila,et al.  Comparison of two harvesting methods for complete tree removal on tree stands on drained peatlands , 2013 .

[28]  Bruce Talbot,et al.  Systems Analysis of Ten Supply Chains for Whole Tree Chips , 2014 .

[29]  Erkki Tomppo,et al.  Kunnittaiset metsävaratiedot 1990–94 , 1970 .

[30]  Matti Sirèn,et al.  Hakkuukonetyö, sen korjuujälki ja puustovaurioiden ennustaminen. , 1998 .

[31]  Juha Laitila,et al.  Harvesting alternatives, accumulation and procurement cost of small-diameter thinning wood for fuel in Central Finland. , 2010 .

[32]  Ulrich J. Wolfsmayr,et al.  The primary forest fuel supply chain: a literature review. , 2014 .

[33]  Kalle Kärhä,et al.  Mechanized Energy Wood Harvesting from Early Thinnings , 2005 .

[34]  Samuli Rinne Energiapuun haketuksen ja murskauksen kustannukset , 2010 .

[35]  Anssi Ahtikoski,et al.  Economic viability of utilizing biomass energy from young stands—The case of Finland , 2008 .

[36]  Rolf Björheden,et al.  Drivers behind the development of forest energy in Sweden , 2006 .

[37]  R. Lauhanen,et al.  Moisture Content of Norway Spruce Stump Wood at Clear Cutting Areas and Roadside Storage Sites , 2010 .

[38]  E. Anerud Stumps as Fuel - the influence of handling method on fuel quality , 2012 .

[39]  Jouko Laasasenaho Taper curve and volume functions for pine, spruce and birch [Pinus sylvestris, Picea abies, Betula pendula, Betula pubescens] , 1982 .

[40]  Heikki Ovaskainen,et al.  An Adaptive Work Study Method for Identifying the Human Factors that Influence the Performance of a Human-Machine System , 2012 .

[41]  Tapio Ranta,et al.  The profitability of transporting uncomminuted raw materials in Finland , 2006 .

[42]  K. Väätäinen,et al.  The cutting productivity of the excavator-based harvester in integrated harvesting of pulpwood and energy wood. , 2013 .

[43]  Kalle Kärhä,et al.  Time consumption models and parameters for off- and on-road transportation of whole-tree bundles. , 2009 .

[44]  Leif Gustavsson,et al.  Biofuels from stumps and small roundwood - Costs and CO2 benefits , 2008 .

[45]  Juha Nurmi,et al.  Heating values of mature trees. , 1997 .

[46]  Jussi Laurila,et al.  Weight and volume of small-sized whole trees at different phases of the supply chain , 2012 .

[47]  Girma Gebresenbet,et al.  Cleaning of harvested Norway spruce stumps using a vibration-based method , 2013 .

[48]  Kari Väätäinen,et al.  Improving the Logistics of Biofuel Reception at the Power Plant of Kuopio City , 2005 .

[49]  Dan Bergström,et al.  Simulating conventional and integrated stump- and round-wood harvesting systems: a comparison of productivity and costs , 2014 .

[50]  Juha Laitila,et al.  Efficiency of Integrated Grinding and Screening of Stump Wood for Fuel at Roadside Landing with a Low-Speed Double-Shaft Grinder and a Star Screen , 2015 .

[52]  Simon Berg,et al.  Technology and systems for stump harvesting with low ground disturbance , 2014 .

[53]  Bruce Talbot,et al.  Assessing the Utility of Two Integrated Harvester-Forwarder Machine Concepts Through Stand-Level Simulation , 2003 .

[54]  Antti Asikainen,et al.  Simulation of stump crushing and truck transport of chips , 2010 .

[55]  Rien Visser,et al.  Analyzing and estimating delays in wood chipping operations. , 2009 .

[56]  Tomas Nordfjell,et al.  Pine and spruce stump harvesting productivity and costs using a Pallari KH 160 stump-lifting tool , 2011 .

[57]  Yolanda Ambrosio,et al.  Recovering of forest biomass from Spanish hybrid poplar plantations , 2011 .

[58]  J. Nurmi,et al.  The characteristics of whole-tree fuel stocks from silvicultural cleanings and thinnings , 2007 .

[59]  Juha Laitila,et al.  Productivity of Stump Harvesting for Fuel , 2008 .

[60]  T. Ranta,et al.  Logging residues from regeneration fellings for biofuel production - a GIS-based availability and supply cost analysis , 2002 .

[61]  K. Kärhä,et al.  Whole-tree harvesting in young stands in Finland. , 2006 .

[62]  Lars Eliasson,et al.  The COST model for calculation of forest operations costs , 2014 .

[63]  Dan Bergström,et al.  Comparison of energy-wood and pulpwood thinning systems in young birch stands , 2011 .

[64]  T. Palander,et al.  Analyzing the views of wood harvesting professionals related to the approaches for increasing the cost-efficiency of wood harvesting from young stands. , 2010 .

[65]  Christian Kanzian,et al.  Monitoring the chipping and transportation of wood fuels with a fleet management system. , 2013 .

[66]  Paula Jylhä,et al.  Harvesting undelimbed Scots pine (Pinus sylvestris L.) from first thinnings for integrated production of kraft pulp and energy , 2011 .