Low power single bitline 6T SRAM cell with high read stability

This paper presents a novel CMOS 6-transistor SRAM cell for different purposes including low power embedded SRAM applications and stand-alone SRAM applications. The data is retained by the cell with the help of leakage current and positive feedback, and does not use any refresh cycle. The size of the new cell is comparable to the conventional six-transistor cell of same technology and design rules. Also, the proposed cells uses a single bit-line for both read and write purposes.

[1]  Rajesh Mehra,et al.  Low power design of an SRAM cell for portable devices , 2010, 2010 International Conference on Computer and Communication Technology (ICCCT).

[2]  W. Dehaene,et al.  A dual port dual width 90nm SRAM with guaranteed data retention at minimal standby supply voltage , 2008, ESSCIRC 2008 - 34th European Solid-State Circuits Conference.

[3]  Y. Nakagome,et al.  Trends in low-power RAM circuit technologies , 1994, Proceedings of 1994 IEEE Symposium on Low Power Electronics.

[4]  E. Seevinck,et al.  Static-noise margin analysis of MOS SRAM cells , 1987 .

[5]  K. Takeda,et al.  A read-static-noise-margin-free SRAM cell for low-V/sub dd/ and high-speed applications , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[6]  Jan M. Rabaey,et al.  Digital Integrated Circuits: A Design Perspective , 1995 .

[7]  A. Sil,et al.  A novel high write speed, low power, read-SNM-free 6T SRAM cell , 2008, 2008 51st Midwest Symposium on Circuits and Systems.

[8]  H. Yamauchi,et al.  A 0.6 V Dual-Rail Compiler SRAM Design on 45 nm CMOS Technology With Adaptive SRAM Power for Lower VDD_min VLSIs , 2009, IEEE Journal of Solid-State Circuits.

[9]  Anna W. Topol,et al.  Stable SRAM cell design for the 32 nm node and beyond , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[10]  Dake Liu,et al.  Power consumption estimation in CMOS VLSI chips , 1994, IEEE J. Solid State Circuits.

[11]  Farshad Moradi,et al.  65NM sub-threshold 11T-SRAM for ultra low voltage applications , 2008, 2008 IEEE International SOC Conference.

[12]  Dhiraj K. Pradhan,et al.  A single ended 6T SRAM cell design for ultra-low-voltage applications , 2008, IEICE Electron. Express.

[13]  W. Dehaene,et al.  Read Stability and Write-Ability Analysis of SRAM Cells for Nanometer Technologies , 2006, IEEE Journal of Solid-State Circuits.

[14]  A. R. Aswatha,et al.  Design and Analysis of a New Loadless 4T SRAM Cell in Deep Submicron CMOS Technologies , 2009, 2009 Second International Conference on Emerging Trends in Engineering & Technology.

[15]  Magdy A. Bayoumi,et al.  Low-Power Cache Design Using 7T SRAM Cell , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[16]  Nomura Masahiro,et al.  A Read-Static-Noise-Margin-Free SRAM cell for low-Vdd and High-speed applications , 2005 .

[17]  S. Dasgupta,et al.  A comparative study of 6T, 8T and 9T decanano SRAM cell , 2009, 2009 IEEE Symposium on Industrial Electronics & Applications.

[18]  Masahiro Nomura,et al.  A read-static-noise-margin-free SRAM cell for low-VDD and high-speed applications , 2006, IEEE Journal of Solid-State Circuits.

[19]  J. Meindl,et al.  The impact of intrinsic device fluctuations on CMOS SRAM cell stability , 2001, IEEE J. Solid State Circuits.

[20]  Tsutomu Yoshihara,et al.  A new 7-transistor SRAM cell design with high read stability , 2010, 2010 International Conference on Electronic Devices, Systems and Applications.

[21]  A.P. Chandrakasan,et al.  A 256-kb 65-nm Sub-threshold SRAM Design for Ultra-Low-Voltage Operation , 2007, IEEE Journal of Solid-State Circuits.

[22]  James Tschanz,et al.  Parameter variations and impact on circuits and microarchitecture , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[23]  Masashi Horiguchi,et al.  Ultra-Low Voltage Nano-Scale Memories , 2007, Series on Integrated Circuits and Systems.

[24]  Shilpi Birla,et al.  ANALYSIS OF THE DATA STABILITY AND LEAKAGE POWER IN THE VARIOUS SRAM CELLS TOPOLOGIES , 2010 .

[25]  S. Roy,et al.  The impact of random doping effects on CMOS SRAM cell , 2004, Proceedings of the 30th European Solid-State Circuits Conference.