OPTIMUM MULTIPLE TUNED MASS DAMPERS FOR BASE-EXCITED DAMPED MAIN SYSTEM

The optimum parameters of multiple tuned mass dampers (MTMD) for suppressing the dynamic response of a base-excited damped main system are investigated by a numerical searching technique. The criterion selected for the optimality is the minimization of the steady state displacement of the main system under harmonic base acceleration. The parameters of the MTMD that are optimized include: the damping ratio, the tuning frequency ratio and the frequency bandwidth. The optimum parameters of the MTMD system and corresponding displacement are obtained for different damping ratios of the main system and different mass ratios of the MTMD system. The explicit formulas for the optimum parameters of the MTMD (i.e. damping ratio, bandwidth and tuning frequency) are then derived using a curve-fitting scheme that can readily be used in engineering applications. The error in the proposed explicit expressions is investigated and found to be negligible. The effectiveness of the optimally designed MTMD system is also compared with that of the optimum single tuned mass damper. It is observed that the optimally designed MTMD system is more effective for vibration control than the single tuned mass damper. Further, the damping in the main system significantly influences the optimum parameters and the effectiveness of the MTMD system.