Stony coral tissue loss disease induces transcriptional signatures of in situ degradation of dysfunctional Symbiodiniaceae

[1]  A. Thurber,et al.  Viruses of a key coral symbiont exhibit temperature-driven productivity across a reefscape , 2023, ISME Communications.

[2]  Carolyn A. Miller,et al.  Experimental transmission of Stony Coral Tissue Loss Disease results in differential microbial responses within coral mucus and tissue , 2022, ISME Communications.

[3]  Jeffery P. Demuth,et al.  Adaptive variation in homologue number within transcript families promotes expression divergence in reef‐building coral , 2022, Molecular ecology.

[4]  D. Holstein,et al.  Alphaflexivirus Genomes in Stony Coral Tissue Loss Disease-Affected, Disease-Exposed, and Disease-Unexposed Coral Colonies in the U.S. Virgin Islands , 2022, Microbiology resource announcements.

[5]  T. Weatherby,et al.  Viral-Like Particles Are Associated With Endosymbiont Pathology in Florida Corals Affected by Stony Coral Tissue Loss Disease , 2021, Frontiers in Marine Science.

[6]  Carolyn A. Miller,et al.  Microbial bioindicators of Stony Coral Tissue Loss Disease identified in corals and overlying waters using a rapid field-based sequencing approach. , 2021, Environmental microbiology.

[7]  V. Paul,et al.  Gene Expression Response to Stony Coral Tissue Loss Disease Transmission in M. cavernosa and O. faveolata From Florida , 2021, Frontiers in Marine Science.

[8]  D. Holstein,et al.  Variable Species Responses to Experimental Stony Coral Tissue Loss Disease (SCTLD) Exposure , 2021, Frontiers in Marine Science.

[9]  A. Tanay,et al.  A stony coral cell atlas illuminates the molecular and cellular basis of coral symbiosis, calcification, and immunity , 2021, Cell.

[10]  J. Voss,et al.  Assessing the effectiveness of two intervention methods for stony coral tissue loss disease on Montastraea cavernosa , 2021, Scientific Reports.

[11]  T. Smith,et al.  3D Photogrammetry Reveals Dynamics of Stony Coral Tissue Loss Disease (SCTLD) Lesion Progression Across a Thermal Stress Event , 2020, Frontiers in Marine Science.

[12]  E. Peters,et al.  Stony Coral Tissue Loss Disease in Florida Is Associated With Disruption of Host–Zooxanthellae Physiology , 2020, Frontiers in Marine Science.

[13]  Joleah B. Lamb,et al.  Deciphering Coral Disease Dynamics: Integrating Host, Microbiome, and the Changing Environment , 2020, Frontiers in Ecology and Evolution.

[14]  Peter B. McGarvey,et al.  UniProt: the universal protein knowledgebase in 2021 , 2020, Nucleic Acids Res..

[15]  M. Matz,et al.  Environmental specialization and cryptic genetic divergence in two massive coral species from the Florida Keys Reef Tract , 2020, bioRxiv.

[16]  C. Shea,et al.  Evaluating the small-scale epidemiology of the stony-coral -tissue-loss-disease in the middle Florida Keys , 2020, PloS one.

[17]  V. Paul,et al.  Disease Diagnostics and Potential Coinfections by Vibrio coralliilyticus During an Ongoing Coral Disease Outbreak in Florida , 2020, Frontiers in Microbiology.

[18]  L. Mydlarz,et al.  Increased Algal Symbiont Density Reduces Host Immunity in a Threatened Caribbean Coral Species, Orbicella faveolata , 2020, Frontiers in Ecology and Evolution.

[19]  V. Weis,et al.  The Molecular Language of the Cnidarian-Dinoflagellate Symbiosis. , 2020, Trends in microbiology.

[20]  E. Muller,et al.  Rhodobacterales and Rhizobiales Are Associated With Stony Coral Tissue Loss Disease and Its Suspected Sources of Transmission , 2020, Frontiers in Microbiology.

[21]  R. van Woesik,et al.  Spatial Epidemiology of the Stony-Coral-Tissue-Loss Disease in Florida , 2020, Frontiers in Marine Science.

[22]  A. Correa,et al.  Symbiont community diversity is more variable in corals that respond poorly to stress , 2020, Global change biology.

[23]  G. McFadden,et al.  Symbiotic lifestyle triggers drastic changes in the gene expression of the algal endosymbiont Breviolum minutum (Symbiodiniaceae) , 2019, Ecology and evolution.

[24]  K. Neely,et al.  Effectiveness of topical antibiotics in treating corals affected by Stony Coral Tissue Loss Disease , 2019, bioRxiv.

[25]  M. Rodriguez-Lanetty,et al.  Free‐living and symbiotic lifestyles of a thermotolerant coral endosymbiont display profoundly distinct transcriptomes under both stable and heat stress conditions , 2019, Molecular ecology.

[26]  V. Paul,et al.  Microbial Community Shifts Associated With the Ongoing Stony Coral Tissue Loss Disease Outbreak on the Florida Reef Tract , 2019, bioRxiv.

[27]  Hugh J. M. Warrington,et al.  SymPortal: A novel analytical framework and platform for coral algal symbiont next‐generation sequencing ITS2 profiling , 2019, Molecular ecology resources.

[28]  E. Howells,et al.  Genomic and transcriptomic signals of thermal tolerance in heat‐tolerant corals (Platygyra daedalea) of the Arabian/Persian Gulf , 2018, Molecular ecology.

[29]  M. Wilcox,et al.  Evolutionary conservation of the antimicrobial function of mucus: a first defence against infection , 2018, npj Biofilms and Microbiomes.

[30]  Patrick Wincker,et al.  An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region , 2018, PeerJ.

[31]  A. Marchetti,et al.  Symbiodinium Functional Diversity in the Coral Siderastrea siderea Is Influenced by Thermal Stress and Reef Environment, but Not Ocean Acidification , 2018, Front. Mar. Sci..

[32]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[33]  B. Willis,et al.  Antimicrobial and stress responses to increased temperature and bacterial pathogen challenge in the holobiont of a reef‐building coral , 2018, Molecular ecology.

[34]  M. Matz,et al.  Intraspecific differences in molecular stress responses and coral pathobiome contribute to mortality under bacterial challenge in Acropora millepora , 2017, Scientific Reports.

[35]  Geet Duggal,et al.  Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference , 2017, Nature Methods.

[36]  R. Gates,et al.  Defining the Core Microbiome in Corals' Microbial Soup. , 2017, Trends in microbiology.

[37]  J. Grimwood,et al.  Empty Niches after Extinctions Increase Population Sizes of Modern Corals , 2016, Current Biology.

[38]  H. Verbruggen,et al.  Multi-marker metabarcoding of coral skeletons reveals a rich microbiome and diverse evolutionary origins of endolithic algae , 2016, Scientific Reports.

[39]  S. Egan,et al.  Microbial Dysbiosis: Rethinking Disease in Marine Ecosystems , 2016, Front. Microbiol..

[40]  M. Robinson,et al.  Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences , 2015, F1000Research.

[41]  I. Baums,et al.  Gene Expression Variation Resolves Species and Individual Strains among Coral-Associated Dinoflagellates within the Genus Symbiodinium , 2016, Genome biology and evolution.

[42]  Huang Gao,et al.  Database resources of the National Center for Biotechnology Information , 2015, Nucleic Acids Res..

[43]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[44]  R. Nielsen,et al.  Phylogenetic ANOVA: The Expression Variance and Evolution Model for Quantitative Trait Evolution. , 2015, Systematic biology.

[45]  Fátima Sánchez-Cabo,et al.  GOplot: an R package for visually combining expression data with functional analysis , 2015, Bioinform..

[46]  B. Meng,et al.  Evidence that the endosomal sorting complex required for transport-II (ESCRT-II) is required for efficient human immunodeficiency virus-1 (HIV-1) production , 2015, Retrovirology.

[47]  S. Kelly,et al.  OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy , 2015, Genome Biology.

[48]  M. Matz,et al.  Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus , 2015, bioRxiv.

[49]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[50]  Y. Wenger,et al.  Injury-induced immune responses in Hydra. , 2014, Seminars in immunology.

[51]  Colin N. Dewey,et al.  De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis , 2013, Nature Protocols.

[52]  Sang-oh Han,et al.  Distinct roles for β‐arrestin2 and arrestin‐domain‐containing proteins in β2 adrenergic receptor trafficking , 2013, EMBO reports.

[53]  T. Oliver,et al.  Genomic basis for coral resilience to climate change , 2013, Proceedings of the National Academy of Sciences.

[54]  S. Sunagawa,et al.  Symbiodinium Transcriptomes: Genome Insights into the Dinoflagellate Symbionts of Reef-Building Corals , 2012, PloS one.

[55]  M. Karin,et al.  Expanding TRAF function: TRAF3 as a tri-faced immune regulator , 2011, Nature Reviews Immunology.

[56]  N. Friedman,et al.  Trinity : reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2016 .

[57]  R. Gates,et al.  Evaluating the temporal stability of stress-activated protein kinase and cytoskeleton gene expression in the Pacific reef corals Pocillopora damicornis and Seriatopora hystrix , 2010 .

[58]  J. Bruno,et al.  The Impact of Climate Change on the World’s Marine Ecosystems , 2010, Science.

[59]  L. Mydlarz,et al.  What are the physiological and immunological responses of coral to climate warming and disease? , 2010, Journal of Experimental Biology.

[60]  Ying Gao,et al.  Bioinformatics Applications Note Sequence Analysis Cd-hit Suite: a Web Server for Clustering and Comparing Biological Sequences , 2022 .

[61]  J. Mcmanus,et al.  Dynamics and impact of the coral disease white plague: insights from a simulation model. , 2009, Diseases of aquatic organisms.

[62]  C. Downs,et al.  Symbiophagy as a cellular mechanism for coral bleaching , 2009, Autophagy.

[63]  X. Deng,et al.  The COP9 signalosome: more than a protease. , 2008, Trends in biochemical sciences.

[64]  V. Weis Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis , 2008, Journal of Experimental Biology.

[65]  Tony J Collins,et al.  ImageJ for microscopy. , 2007, BioTechniques.

[66]  M. Naumann,et al.  CSN controls NF‐κB by deubiquitinylation of IκBα , 2007 .

[67]  J. Bruno,et al.  Nutrient enrichment can increase the severity of coral diseases , 2003 .

[68]  L. Muscatine,et al.  Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration1 , 1981 .

[69]  A. Marchetti,et al.  Thermal and pCO2 Stress Elicit Divergent Transcriptomic Responses in a Resilient Coral , 2016, Front. Mar. Sci..

[70]  O. Hoegh‐Guldberg,et al.  Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagellates in response to thermal stress: possible implications for coral bleaching , 2010, Cell Stress and Chaperones.