The origins and impact of primate segmental duplications.

[1]  J. Lupski,et al.  Mechanisms of change in gene copy number , 2009, Nature Reviews Genetics.

[2]  Mira V. Han,et al.  Adaptive evolution of young gene duplicates in mammals. , 2009, Genome research.

[3]  Peter A. Meric,et al.  Lineage-Specific Biology Revealed by a Finished Genome Assembly of the Mouse , 2009, PLoS biology.

[4]  K. Worley,et al.  The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution , 2009, Science.

[5]  Can Alkan,et al.  Death and Resurrection of the Human IRGM Gene , 2009, PLoS genetics.

[6]  C. Baker,et al.  A burst of segmental duplications in the genome of the African great ape ancestor , 2009, Nature.

[7]  Jeremiah D. Degenhardt,et al.  Copy Number Variation of CCL3-like Genes Affects Rate of Progression to Simian-AIDS in Rhesus Macaques (Macaca mulatta) , 2009, PLoS genetics.

[8]  Thomas J. Nicholas,et al.  The genomic architecture of segmental duplications and associated copy number variants in dogs. , 2008, Genome research.

[9]  E. Eichler,et al.  Sequencing human-gibbon breakpoints of synteny reveals mosaic new insertions at rearrangement sites. , 2009, Genome research.

[10]  Danielle G. Lemay,et al.  The bovine lactation genome: insights into the evolution of mammalian milk , 2009, Genome Biology.

[11]  Hugo Y. K. Lam,et al.  Analysis of copy number variants and segmental duplications in the human genome: Evidence for a change in the process of formation in recent evolutionary history. , 2008, Genome research.

[12]  Kenneth H. Wolfe,et al.  Turning a hobby into a job: How duplicated genes find new functions , 2008, Nature Reviews Genetics.

[13]  Orsolya Symmons,et al.  How segmental duplications shape our genome: recent evolution of ABCC6 and PKD1 Mendelian disease genes. , 2008, Molecular biology and evolution.

[14]  C. Münch,et al.  Evolutionary analysis of the highly dynamic CHEK2 duplicon in anthropoids , 2008, BMC Evolutionary Biology.

[15]  Zhaoshi Jiang,et al.  Evolutionary toggling of the MAPT 17q21.31 inversion region , 2008, Nature Genetics.

[16]  Romain Koszul,et al.  Segmental Duplications Arise from Pol32-Dependent Repair of Broken Forks through Two Alternative Replication-Based Mechanisms , 2008, PLoS genetics.

[17]  Anthony T Papenfuss,et al.  Defensins and the convergent evolution of platypus and reptile venom genes. , 2008, Genome research.

[18]  E. Eichler,et al.  Mouse segmental duplication and copy number variation , 2008, Nature Genetics.

[19]  Ryan D. Hernandez,et al.  Proportionally more deleterious genetic variation in European than in African populations , 2008, Nature.

[20]  André Reis,et al.  Psoriasis is associated with increased beta-defensin genomic copy number. , 2008, Nature genetics.

[21]  André Reis,et al.  Psoriasis is associated with increased β-defensin genomic copy number , 2008, Nature Genetics.

[22]  P. Yen,et al.  Evolution of the DAZ gene and the AZFc region on primate Y chromosomes , 2008, BMC Evolutionary Biology.

[23]  J. Lupski,et al.  A DNA Replication Mechanism for Generating Nonrecurrent Rearrangements Associated with Genomic Disorders , 2007, Cell.

[24]  Mario Cáceres,et al.  A recurrent inversion on the eutherian X chromosome , 2007, Proceedings of the National Academy of Sciences.

[25]  E. Eichler,et al.  Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution , 2007, Nature Genetics.

[26]  P. Stankiewicz,et al.  Hominoid lineage specific amplification of low-copy repeats on 22q11.2 (LCR22s) associated with velo-cardio-facial/digeorge syndrome. , 2007, Human molecular genetics.

[27]  L. Armengol,et al.  Characterization and evolution of the novel gene family FAM90A in primates originated by multiple duplication and rearrangement events. , 2007, Human molecular genetics.

[28]  Jeffery P. Demuth,et al.  Accelerated Rate of Gene Gain and Loss in Primates , 2007, Genetics.

[29]  J. Sikela,et al.  Gene copy number variation spanning 60 million years of human and primate evolution. , 2007, Genome research.

[30]  Adrian Gherman,et al.  Population Bottlenecks as a Potential Major Shaping Force of Human Genome Architecture , 2007, PLoS genetics.

[31]  Michael Ashburner,et al.  Principles of Genome Evolution in the Drosophila melanogaster Species Group , 2007, PLoS biology.

[32]  L. Symington,et al.  Template switching during break-induced replication , 2007, Nature.

[33]  David N. Messina,et al.  Evolutionary and Biomedical Insights from the Rhesus Macaque Genome , 2007, Science.

[34]  D. Cooper,et al.  Structural divergence between the human and chimpanzee genomes , 2007, Human Genetics.

[35]  Steven Scherer,et al.  Recurrent duplication-driven transposition of DNA during hominoid evolution , 2006, Proceedings of the National Academy of Sciences.

[36]  J. Rogers,et al.  A High-Resolution Map of Synteny Disruptions in Gibbon and Human Genomes , 2006, PLoS genetics.

[37]  R. Pfundt,et al.  A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism , 2006, Nature Genetics.

[38]  Andrew J Sharp,et al.  Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome , 2006, Nature Genetics.

[39]  Andrew J Lees,et al.  Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability , 2006, Nature Genetics.

[40]  Bernhard Radlwimmer,et al.  A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. , 2006, American journal of human genetics.

[41]  Gerald J Wyckoff,et al.  Human Lineage–Specific Amplification, Selection, and Neuronal Expression of DUF1220 Domains , 2006, Science.

[42]  E. Eichler,et al.  A preliminary comparative analysis of primate segmental duplications shows elevated substitution rates and a great-ape expansion of intrachromosomal duplications. , 2006, Genome research.

[43]  Enrico Petretto,et al.  Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans , 2006, Nature.

[44]  E. Eichler,et al.  Primate segmental duplications: crucibles of evolution, diversity and disease , 2006, Nature Reviews Genetics.

[45]  James A. Cuff,et al.  Genome sequence, comparative analysis and haplotype structure of the domestic dog , 2005, Nature.

[46]  Pawel Stankiewicz,et al.  Genomic Disorders: Molecular Mechanisms for Rearrangements and Conveyed Phenotypes , 2005, PLoS genetics.

[47]  F. Speleman,et al.  A novel gene family NBPF: intricate structure generated by gene duplications during primate evolution. , 2005, Molecular biology and evolution.

[48]  Ton Feuth,et al.  Diagnostic genome profiling in mental retardation. , 2005, American journal of human genetics.

[49]  E. Eichler,et al.  A genome-wide survey of structural variation between human and chimpanzee. , 2005, Genome research.

[50]  Barbara J. Trask,et al.  Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication , 2005, Nature.

[51]  Jean L. Chang,et al.  Initial sequence of the chimpanzee genome and comparison with the human genome , 2005, Nature.

[52]  E. Eichler,et al.  A genome-wide comparison of recent chimpanzee and human segmental duplications , 2005, Nature.

[53]  A. Kaur,et al.  Interchromosomal segmental duplications explain the unusual structure of PRSS3, the gene for an inhibitor-resistant trypsinogen. , 2005, Molecular biology and evolution.

[54]  P. Pevzner,et al.  Dynamics of Mammalian Chromosome Evolution Inferred from Multispecies Comparative Maps , 2005, Science.

[55]  E. Eichler,et al.  Segmental duplications and copy-number variation in the human genome. , 2005, American journal of human genetics.

[56]  J. Jurka,et al.  RAG1 Core and V(D)J Recombination Signal Sequences Were Derived from Transib Transposons , 2005, PLoS biology.

[57]  E. Eichler,et al.  Fine-scale structural variation of the human genome , 2005, Nature Genetics.

[58]  B. Rovin,et al.  The Influence of CCL 3 L 1 Gene – Containing Segmental Duplications on HIV-1 / AIDS Susceptibility , 2009 .

[59]  M. Suyama,et al.  Complex genomic rearrangements lead to novel primate gene function. , 2005, Genome research.

[60]  M. Lercher,et al.  Explorer Evidence for Widespread Degradation of Gene Control Regions in Hominid Genomes , 2015 .

[61]  H. Stefánsson,et al.  A common inversion under selection in Europeans , 2005, Nature Genetics.

[62]  E. Eichler,et al.  Shotgun sequence assembly and recent segmental duplications within the human genome , 2004, Nature.

[63]  L. Feuk,et al.  Detection of large-scale variation in the human genome , 2004, Nature Genetics.

[64]  D. Haussler,et al.  The structure and evolution of centromeric transition regions within the human genome , 2004, Nature.

[65]  J. Sikela,et al.  Lineage-Specific Gene Duplication and Loss in Human and Great Ape Evolution , 2004, PLoS biology.

[66]  E. Eichler,et al.  Analysis of segmental duplications and genome assembly in the mouse. , 2004, Genome research.

[67]  B. Dujon,et al.  Eucaryotic genome evolution through the spontaneous duplication of large chromosomal segments , 2004, The EMBO journal.

[68]  D. Haussler,et al.  Hotspots of mammalian chromosomal evolution , 2004, Genome Biology.

[69]  L. Shaffer,et al.  Shuffling of genes within low-copy repeats on 22q11 (LCR22) by Alu-mediated recombination events during evolution. , 2003, Genome research.

[70]  E. Eichler,et al.  An Alu transposition model for the origin and expansion of human segmental duplications. , 2003, American journal of human genetics.

[71]  S. Scherer,et al.  Enrichment of segmental duplications in regions of breaks of synteny between the human and mouse genomes suggest their involvement in evolutionary rearrangements. , 2003, Human molecular genetics.

[72]  P. Pevzner,et al.  Human and mouse genomic sequences reveal extensive breakpoint reuse in mammalian evolution , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[73]  D. Haber,et al.  The Tre2 (USP6) oncogene is a hominoid-specific gene , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Colin N. Dewey,et al.  Initial sequencing and comparative analysis of the mouse genome. , 2002 .

[75]  D. Nicolae,et al.  Rapid divergence in expression between duplicate genes inferred from microarray data. , 2002, Trends in genetics : TIG.

[76]  M. Adams,et al.  Recent Segmental Duplications in the Human Genome , 2002, Science.

[77]  Matthias Platzer,et al.  Molecular characterization of the pericentric inversion that causes differences between chimpanzee chromosome 19 and human chromosome 17. , 2002, American journal of human genetics.

[78]  B. Birren,et al.  Structure and evolution of the Smith-Magenis syndrome repeat gene clusters, SMS-REPs. , 2002, Genome research.

[79]  Richard Gibbs,et al.  Bovine Genomic Sequencing Initiative Cattle-izing the Human Genome , 2002 .

[80]  Evan E. Eichler,et al.  Positive selection of a gene family during the emergence of humans and African apes , 2001, Nature.

[81]  K. Osoegawa,et al.  Construction of Bacterial Artificial Chromosome (BAC/PAC) Libraries , 2001, Current protocols in molecular biology.

[82]  B. Trask,et al.  Segmental duplications: organization and impact within the current human genome project assembly. , 2001, Genome research.

[83]  N. Dominy,et al.  Ecological importance of trichromatic vision to primates , 2001, Nature.

[84]  N. Gilbert,et al.  SMN gene duplication and the emergence of the SMN2 gene occurred in distinct hominids: SMN2 is unique to Homo sapiens , 2001, Human Genetics.

[85]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[86]  M. Lynch,et al.  The evolutionary fate and consequences of duplicate genes. , 2000, Science.

[87]  J. Lupski Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. , 1998, Trends in genetics : TIG.

[88]  M. Nei,et al.  Positive Darwinian selection after gene duplication in primate ribonuclease genes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[89]  J. Lupski,et al.  The human COX10 gene is disrupted during homologous recombination between the 24 kb proximal and distal CMT1A-REPs. , 1997, Human molecular genetics.

[90]  B. Dutrillaux,et al.  Emergence and scattering of multiple neurofibromatosis (NF1)-related sequences during hominoid evolution suggest a process of pericentromeric interchromosomal transposition. , 1997, Human molecular genetics.

[91]  K. Morrison Advances in SMA research: Review of gene deletions , 1996, Neuromuscular Disorders.

[92]  Jay Neitz,et al.  Trichromatic colour vision in New World monkeys , 1996, Nature.

[93]  S. Ohno,et al.  Evolution from fish to mammals by gene duplication. , 2009, Hereditas.