Dynamic tensile behavior of PM Ti−47Al−2Nb−2Cr−0.2W intermetallics at elevated temperatures

[1]  T. Edwards,et al.  The interaction of borides and longitudinal twinning in polycrystalline TiAl alloys , 2017 .

[2]  Jin-Xu Liu,et al.  Effects of nano-twinning on the deformation and mechanical behaviours of TiAl alloys with distinct microstructure at elevated loading temperatures , 2017 .

[3]  H. Clemens,et al.  Modeling concepts for intermetallic titanium aluminides , 2016 .

[4]  C. Li,et al.  Microstructure and interface thermal stability of C/Mo double-coated SiC fiber reinforced γ-TiAl matrix composites , 2016 .

[5]  A. Hartmaier,et al.  Stacking fault based analysis of shear mechanisms at interfaces in lamellar TiAl alloys , 2016 .

[6]  B. Liu,et al.  High temperature deformation behavior of near γ-phase high Nb-containing TiAl alloy , 2014 .

[7]  Matthew S. Dargusch,et al.  The dynamic response of a β titanium alloy to high strain rates and elevated temperatures , 2014 .

[8]  Norman M. Wereley,et al.  Advances in gamma titanium aluminides and their manufacturing techniques , 2012 .

[9]  Yong Liu,et al.  Numerical simulation and physical analysis for dynamic behaviors of P/M TiAl alloy in hot-packed forging process , 2012 .

[10]  B. Liu,et al.  Thermomechanical characterization of β-stabilized Ti–45Al–7Nb–0.4W–0.15B alloy , 2011 .

[11]  H. Clemens,et al.  Light-Weight Intermetallic Titanium Aluminides – Status of Research and Development , 2011 .

[12]  N. Lavery,et al.  Emission mitigation potential of lightweight intermetallic TiAl components , 2011 .

[13]  B. Liu,et al.  Hot deformation behavior of TiAl alloys prepared by blended elemental powders , 2011 .

[14]  Y. C. Lin,et al.  A combined Johnson–Cook and Zerilli–Armstrong model for hot compressed typical high-strength alloy steel , 2010 .

[15]  Yuehui He,et al.  Tensile impact behavior and deformation mechanism of duplex TiAl intermetallics at elevated temperatures , 2010 .

[16]  X. Nie,et al.  Experimental study on the dynamic tensile behavior of a poly-crystal pure titanium at elevated temperatures , 2007 .

[17]  Alain Lasalmonie,et al.  Intermetallics: Why is it so difficult to introduce them in gas turbine engines? , 2006 .

[18]  S. R. Chen,et al.  Dynamic deformation and damage in cast γ-TiAl during taylor cylinder impact: Experiments and model validation , 2004 .

[19]  O. Bouaziz,et al.  Modelling of TWIP effect on work-hardening , 2001 .

[20]  R. Wagner,et al.  Microstructure and deformation of two-phase γ-titanium aluminides , 1998 .

[21]  G. Gray,et al.  High strain rate deformation of Ti48Al2Nb2Cr , 1996 .

[22]  Y. W. Kim,et al.  Effect of microstructure on fatigue and tensile properties of the gamma TiAl alloy Ti-46.5Al-3.0Nb-2.1Cr-0.2W , 1995 .

[23]  R. Armstrong,et al.  Dislocation mechanics aspects of plastic instability and shear banding , 1994 .

[24]  Young-Won Kim,et al.  Microstructural evolution and mechanical properties of a forged gamma titanium aluminide alloy , 1992 .

[25]  B. Kear,et al.  Aircraft Gas Turbine Materials and Processes , 1980, Science.

[26]  D. Shechtman,et al.  The deformation and fracture of TiAl at elevated temperatures , 1975 .

[27]  G. Bolling,et al.  Continual mechanical twinning: Part I: Formal description , 1965 .

[28]  P. Janschek Wrought TiAl Blades , 2015 .

[29]  Yuehui He,et al.  Dynamic behavior and fracture mode of TiAl intermetallics with different microstructures at elevated temperatures , 2011 .

[30]  M. Yoo Twinning and mechanical behavior of titanium aluminides and other intermetallics , 1998 .

[31]  Dennis M. Dimiduk,et al.  Systems engineering of gamma titanium aluminides: impact of fundamentals on development strategy , 1998 .

[32]  M. Morris Dislocation mobility, ductility and anomalous strengthening of two-phase TiAl alloys: effects of oxygen and composition , 1996 .