Interfacial Engineering of Wide‐Bandgap Perovskites for Efficient Perovskite/CZTSSe Tandem Solar Cells

Wide‐bandgap perovskites have attracted substantial attention due to their important role in serving as a top absorber in tandem solar cells (TSCs). However, wide‐bandgap perovskite solar cells (PVSCs) typically suffer from severe non‐radiative recombination loss and therefore exhibit high open‐circuit voltage (VOC) deficits. To address these issues, a 2D octyl‐diammonium lead iodide interlayer is adopted onto the hole‐transporting layer to induce the formation of an ultrathin quasi‐2D perovskite that is close to the hole‐selective interface. This approach not only accelerates hole transfer and retards hole accumulation but also reduces the trap density in the perovskite layer on top, thereby efficiently suppresses non‐radiative recombination pathways. Consequently, the champion wide‐bandgap device (≈1.66 eV) exhibits a power conversion efficiency (PCE) of 21.05% with a VOC of 1.23 V, where the VOC deficit of 0.43 V is among the lowest values for inverted wide‐bandgap PVSCs. Moreover, by stacking a semi‐transparent perovskite top cell on a 1.1 eV Cu2ZnSn(S,Se)4 (CZTSSe) bottom cell, a 22.27% PCE was achieved on a perovskite/CZTSSe four‐terminal tandem solar cell, paving the way for all‐solution‐processed, low‐cost, and efficient TSCs with mitigated energy loss in the wide‐bandgap top cells.

[1]  Jun Hee Lee,et al.  Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells , 2021, Nature.

[2]  S. Stranks,et al.  22.8%-Efficient single-crystal mixed-cation inverted perovskite solar cells with a near-optimal bandgap , 2021, Energy & Environmental Science.

[3]  U. Rau,et al.  Interface Optimization via Fullerene Blends Enables Open‐Circuit Voltages of 1.35 V in CH3NH3Pb(I0.8Br0.2)3 Solar Cells , 2021, Advanced Energy Materials.

[4]  A. Jen,et al.  Modifying Surface Termination of CsPbI3 Grain Boundaries by 2D Perovskite Layer for Efficient and Stable Photovoltaics , 2021, Advanced Functional Materials.

[5]  Seong Sik Shin,et al.  Efficient perovskite solar cells via improved carrier management , 2021, Nature.

[6]  Thomas G. Allen,et al.  Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering , 2021 .

[7]  Dong Hoe Kim,et al.  Wide-Bandgap Metal Halide Perovskites for Tandem Solar Cells , 2020, ACS Energy Letters.

[8]  B. Rech,et al.  Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction , 2020, Science.

[9]  A. Jen,et al.  Minimized surface deficiency on wide-bandgap perovskite for efficient indoor photovoltaics , 2020 .

[10]  A. Jen,et al.  Regulating Surface Termination for Efficient Inverted Perovskite Solar Cells with Greater Than 23% Efficiency. , 2020, Journal of the American Chemical Society.

[11]  G. Wang,et al.  An efficient Li+-doping strategy to optimize the band alignment of a Cu2ZnSn(S,Se)4/CdS interface by a Se&LiF co-selenization process , 2020 .

[12]  Lianzhou Wang,et al.  Minimizing Voltage Losses in Perovskite Solar Cells , 2020, Small Structures.

[13]  E. Sargent,et al.  All-Perovskite Tandem Solar Cells: A Roadmap to Uniting High Efficiency with High Stability , 2020 .

[14]  J. Noh,et al.  Recent Progress in Metal Halide Perovskite‐Based Tandem Solar Cells , 2020, Advanced materials.

[15]  A. Tiwari,et al.  Near‐Infrared‐Transparent Perovskite Solar Cells and Perovskite‐Based Tandem Photovoltaics , 2020, Small Methods.

[16]  N. Koch,et al.  Halide Segregation versus Interfacial Recombination in Bromide-Rich Wide-Gap Perovskite Solar Cells , 2020 .

[17]  P. Kamat,et al.  How Chloride Suppresses Photoinduced Phase Segregation in Mixed Halide Perovskites , 2020 .

[18]  Yongli Gao,et al.  Interfacial Molecular Doping of Metal Halide Perovskites for Highly Efficient Solar Cells , 2020, Advanced materials.

[19]  A. Jen,et al.  Modulation of Defects and Interfaces through Alkylammonium Interlayer for Efficient Inverted Perovskite Solar Cells , 2020 .

[20]  C. Brabec,et al.  Graded 2D/3D Perovskite Heterostructure for Efficient and Operationally Stable MA‐Free Perovskite Solar Cells , 2020, Advanced materials.

[21]  L. Korte,et al.  Monolithic Perovskite Tandem Solar Cells: A Review of the Present Status and Advanced Characterization Methods Toward 30% Efficiency , 2020, Advanced Energy Materials.

[22]  Dong Hoe Kim,et al.  Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites , 2020, Science.

[23]  M. Nazeeruddin,et al.  Self‐Crystallized Multifunctional 2D Perovskite for Efficient and Stable Perovskite Solar Cells , 2020, Advanced Functional Materials.

[24]  Thomas G. Allen,et al.  Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon , 2020, Science.

[25]  Zhengshan J. Yu,et al.  Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems , 2020, Science.

[26]  Hui Li,et al.  Efficient Perovskite Solar Cells by Reducing Interface‐Mediated Recombination: a Bulky Amine Approach , 2020, Advanced Energy Materials.

[27]  Zhenghong Lu,et al.  Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells , 2020 .

[28]  A. Jen,et al.  Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base , 2020, Nature Communications.

[29]  Jia Zhu,et al.  Simultaneous Contact and Grain‐Boundary Passivation in Planar Perovskite Solar Cells Using SnO2‐KCl Composite Electron Transport Layer , 2019, Advanced Energy Materials.

[30]  Zhengxin Liu,et al.  27%‐Efficiency Four‐Terminal Perovskite/Silicon Tandem Solar Cells by Sandwiched Gold Nanomesh , 2019, Advanced Functional Materials.

[31]  Dong Suk Kim,et al.  Methylammonium Chloride Induces Intermediate Phase Stabilization for Efficient Perovskite Solar Cells , 2019, Joule.

[32]  Sean P. Dunfield,et al.  Enabling Flexible All-Perovskite Tandem Solar Cells , 2019, Joule.

[33]  Dong Hoe Kim,et al.  Bimolecular Additives Improve Wide-Band-Gap Perovskites for Efficient Tandem Solar Cells with CIGS , 2019, Joule.

[34]  T. Unold,et al.  The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells , 2019, Energy & Environmental Science.

[35]  G. Fang,et al.  Achieving a high open-circuit voltage in inverted wide-bandgap perovskite solar cells with a graded perovskite homojunction , 2019, Nano Energy.

[36]  Dong Hoe Kim,et al.  Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells , 2019, Science.

[37]  Lucy D. Whalley,et al.  Accumulation of Deep Traps at Grain Boundaries in Halide Perovskites , 2019, ACS Energy Letters.

[38]  I. Balberg,et al.  Deep Defect States in Wide-Band-Gap ABX3 Halide Perovskites , 2019, ACS Energy Letters.

[39]  Yang Yang,et al.  Supersymmetric laser arrays , 2019, Nature Photonics.

[40]  Zacharie Jehl,et al.  Progress and Perspectives of Thin Film Kesterite Photovoltaic Technology: A Critical Review , 2019, Advanced materials.

[41]  Jinsong Huang,et al.  Dual Functions of Crystallization Control and Defect Passivation Enabled by Sulfonic Zwitterions for Stable and Efficient Perovskite Solar Cells , 2018, Advanced materials.

[42]  T. Unold,et al.  Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells , 2018, Nature Energy.

[43]  Tomas Leijtens,et al.  Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors , 2018, Nature Energy.

[44]  Q. Gong,et al.  Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells , 2018, Nano Energy.

[45]  Rui Zhu,et al.  Enhanced photovoltage for inverted planar heterojunction perovskite solar cells , 2018, Science.

[46]  Philip Schulz,et al.  Interface Design for Metal Halide Perovskite Solar Cells , 2018 .

[47]  Peng Chen,et al.  In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells , 2018 .

[48]  A. Ho-baillie,et al.  Passivation of Grain Boundaries by Phenethylammonium in Formamidinium-Methylammonium Lead Halide Perovskite Solar Cells , 2018 .

[49]  M. Calvo,et al.  ABX3 Perovskites for Tandem Solar Cells , 2017 .

[50]  R. Friend,et al.  Defect-Assisted Photoinduced Halide Segregation in Mixed-Halide Perovskite Thin Films , 2017 .

[51]  U. Bach,et al.  Perovskite Tandem Solar Cells , 2017 .

[52]  Yanfa Yan,et al.  Synergistic Effects of Lead Thiocyanate Additive and Solvent Annealing on the Performance of Wide-Bandgap Perovskite Solar Cells , 2017 .

[53]  Shin Woei Leow,et al.  Over 20% Efficient CIGS–Perovskite Tandem Solar Cells , 2017 .

[54]  J. M. Gardner,et al.  Layered 2D alkyldiammonium lead iodide perovskites: synthesis, characterization, and use in solar cells , 2016 .

[55]  Zhibin Yang,et al.  Stable Low‐Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells , 2016, Advanced materials.

[56]  A. Jen,et al.  Defect Passivation of Organic–Inorganic Hybrid Perovskites by Diammonium Iodide toward High-Performance Photovoltaic Devices , 2016 .

[57]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[58]  Jean Manca,et al.  Relating the open-circuit voltage to interface molecular properties of donor:acceptor bulk heterojunction solar cells , 2010 .

[59]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .