Seven parton amplitudes from recursion relations

We present the first calculation of two-quark and five-gluon tree amplitudes using on-shell recursion relations. These amplitudes are needed for tree level 5-jet cross-section and an essential ingredient for next-to-leading order 4-jet and next-to-next-to-leading order 3-jet production at hadronic colliders. Very compact expressions for all possible helicity configurations are provided, allowing for direct implementation in Monte-Carlo codes.

[1]  V. Khoze,et al.  Recursion relations for gauge theory amplitudes with massive vector bosons and fermions , 2005, hep-th/0507161.

[2]  L. Dixon,et al.  Bootstrapping multiparton loop amplitudes in QCD , 2005, hep-ph/0507005.

[3]  W. Stirling,et al.  MHV techniques for QED processes , 2005, hep-th/0509063.

[4]  H. Ita,et al.  MHV-vertices for gravity amplitudes , 2005, hep-th/0509016.

[5]  Kasper Risager A direct proof of the CSW rules , 2005, hep-th/0508206.

[6]  H. Ita,et al.  Recursive calculation of one-loop QCD integral coefficients , 2005, hep-ph/0507019.

[7]  A. Brandhuber,et al.  Loop amplitudes in pure Yang-Mills from generalised unitarity , 2005, hep-th/0506068.

[8]  L. Dixon,et al.  The last of the finite loop amplitudes in QCD , 2005, hep-ph/0505055.

[9]  Peter Svrček,et al.  Recursion relations for gauge theory amplitudes with massive particles. , 2005, hep-th/0504159.

[10]  A. Brandhuber,et al.  A recursion relation for gravity amplitudes , 2005, hep-th/0502146.

[11]  N. Bjerrum-Bohr,et al.  One-loop gluon scattering amplitudes in theories with N<4 supersymmetries , 2005, hep-th/0502028.

[12]  C. Wen,et al.  Compact formulas for tree amplitudes of six partons , 2005, hep-th/0502009.

[13]  L. Dixon,et al.  On-shell recurrence relations for one-loop QCD amplitudes , 2005, hep-th/0501240.

[14]  C. Wen,et al.  Recursion relations for tree amplitudes in super gauge theories , 2005, hep-th/0501121.

[15]  E. Witten,et al.  Direct proof of the tree-level scattering amplitude recursion relation in Yang-mills theory. , 2005, Physical review letters.

[16]  F. Cachazo,et al.  New recursion relations for tree amplitudes of gluons , 2004, hep-th/0412308.

[17]  R. Roiban,et al.  Dissolving N = 4 loop amplitudes into QCD tree amplitudes. , 2004, Physical review letters.

[18]  P. Mastrolia,et al.  Twistor-Inspired Construction of Electroweak Vector Boson Currents , 2004, hep-ph/0412167.

[19]  F. Cachazo,et al.  Generalized unitarity and one-loop amplitudes in N=4 super-Yang-Mills , 2004, hep-th/0412103.

[20]  A. Brandhuber,et al.  Non-supersymmetric loop amplitudes and MHV vertices , 2004, hep-th/0412108.

[21]  A. Brandhuber,et al.  One-loop gauge theory amplitudes in N=4 super Yang-Mills from MHV vertices , 2004, hep-th/0407214.

[22]  V. Khoze,et al.  MHV rules for Higgs plus multi-gluon amplitudes , 2004, hep-th/0412275.

[23]  V. Khoze,et al.  Non-MHV Tree Amplitudes in Gauge Theory , 2004, hep-th/0407027.

[24]  V. Khoze,et al.  Tree Amplitudes in Gauge Theory as Scalar MHV Diagrams , 2004, hep-th/0404072.

[25]  T. Gannon,et al.  The D-branes of SU(n) , 2004, hep-th/0403271.

[26]  Chuan-Jie Zhu The googly amplitudes in gauge theory , 2004, hep-th/0403115.

[27]  E. Witten,et al.  MHV vertices and tree amplitudes in gauge theory , 2004, hep-th/0403047.

[28]  E. Witten Perturbative Gauge Theory as a String Theory in Twistor Space , 2003, hep-th/0312171.

[29]  F. Maltoni,et al.  MadEvent: Automatic event generation with MadGraph , 2002, hep-ph/0208156.

[30]  F. Maltoni,et al.  Multi-photon amplitudes for next-to-leading order QCD , 1999, hep-ph/9910253.

[31]  L. Dixon Calculating scattering amplitudes efficiently , 1996, hep-ph/9601359.

[32]  A. Morgan,et al.  MASSIVE LOOP AMPLITUDES FROM UNITARITY , 1995, hep-ph/9511336.

[33]  L. Dixon,et al.  Fusing gauge theory tree amplitudes into loop amplitudes , 1994, hep-ph/9409265.

[34]  L. Dixon,et al.  One-loop n-point gauge theory amplitudes, unitarity and collinear limits , 1994, hep-ph/9403226.

[35]  M. Mangano,et al.  Multi-Parton Amplitudes in Gauge Theories , 1991, hep-th/0509223.

[36]  V. Nair A Current Algebra for Some Gauge Theory Amplitudes , 1988 .

[37]  M. Mangano,et al.  Duality and Multi - Gluon Scattering , 1988 .

[38]  W. Giele,et al.  The Six Gluon Process as an Example of Weyl-Van Der Waerden Spinor Calculus , 1987 .

[39]  Zhan Xu,et al.  Helicity amplitudes for multiple bremsstrahlung in massless non-abelian gauge theories , 1987 .

[40]  Taylor,et al.  Amplitude for n-gluon scattering. , 1986, Physical review letters.

[41]  J. Gunion,et al.  Improved analytic techniques for tree graph calculations and the ggqqℓℓ subprocess , 1985 .

[42]  R. Kleiss,et al.  Spinor techniques for calculating pp → W±/Z0 + jets , 1985 .

[43]  Zhan Xu,et al.  HELICITY AMPLITUDES FOR MULTIPLE BREMSSTRAHLUNG IN MASSLESS NONABELIAN GAUGE THEORY. 2. DECOMPOSITION OF AMPLITUDES INTO GAUGE INVARIANT SUBSETS , 1985 .