Efficient skeleton-guided displaced subdivision surfaces

Displacement mapping is a computer graphics technique that uses scalar offsets along normals on a base surface to represent and render a model with highly geometric details. The technique natively compresses the model and saves memory I/O. A subdivision surface is the ideal base surface, due to its good geometric properties, such as arbitrary topology, global smoothness, and multi-resolution via hardware tessellation, among others. Two of the main challenges in displacement mapping representation are constructing the base surface faithfully and generating displacement maps efficiently. In this paper, we propose an efficient skeleton-guided displaced subdivision surfaces method. The construction of the base mesh is guided by a sketched skeleton. To make the shape of the base surface fit the input model well, we develop an efficient progressive GPU-based subdivision fitting method. Finally, a GPU-based raycasting method is proposed to sample the input model and generate the displacement maps. The experimental results demonstrate that the proposed method can efficiently generate a high-quality displacement mapping representation. Compared with the traditional displaced subdivision surface method, the proposed method is more suitable for the modern rendering pipeline and has higher efficiency.

[1]  Hans-Peter Seidel,et al.  Multiresolution Shape Deformations for Meshes with Dynamic Vertex Connectivity , 2000, Comput. Graph. Forum.

[2]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[3]  S. Tachi,et al.  Detailed Shape Representation with Parallax Mapping , 2001 .

[4]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[5]  Thomas J. Cashman,et al.  Beyond Catmull–Clark? A Survey of Advances in Subdivision Surface Methods , 2012, Comput. Graph. Forum.

[6]  Charles T. Loop,et al.  Approximating Catmull-Clark subdivision surfaces with bicubic patches , 2008, TOGS.

[7]  Stefan Guthe,et al.  Hardware Accelerated Per-Pixel Displacement Mapping , 2004, Graphics Interface.

[8]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[9]  Brent Burley,et al.  Ptex: Per‐Face Texture Mapping for Production Rendering , 2008, Comput. Graph. Forum.

[10]  Dinesh Manocha,et al.  Appearance-preserving simplification , 1998, SIGGRAPH.

[11]  Tony DeRose,et al.  Subdivision surfaces in character animation , 1998, SIGGRAPH.

[12]  Marc Levoy,et al.  Fitting smooth surfaces to dense polygon meshes , 1996, SIGGRAPH.

[13]  Hans-Peter Seidel,et al.  Automatic Conversion of Mesh Animations into Skeleton‐based Animations , 2008, Comput. Graph. Forum.

[14]  JungHyun Han,et al.  Feature‐Preserving Displacement Mapping With Graphics Processing Unit (GPU) Tessellation , 2012, Comput. Graph. Forum.

[15]  Hugues Hoppe,et al.  Displaced subdivision surfaces , 2000, SIGGRAPH.

[16]  Matthias Nießner,et al.  Analytic displacement mapping using hardware tessellation , 2013, TOGS.

[17]  Stephen Lin,et al.  View-dependent displacement mapping , 2003, ACM Trans. Graph..

[18]  Robert L. Cook,et al.  Shade trees , 1984, SIGGRAPH.

[19]  Tong-Yee Lee,et al.  Compatible quadrangulation by sketching , 2009 .

[20]  Ara Kermanikian Introducing Mudbox , 2010 .

[21]  James F. Blinn,et al.  Simulation of wrinkled surfaces , 1978, SIGGRAPH.

[22]  Stefan Gumhold,et al.  Multiresolution rendering with displacement mapping , 1999, Workshop on Graphics Hardware.

[23]  László Szirmay-Kalos,et al.  Displacement Mapping on the GPU — State of the Art , 2008 .

[24]  Xiaonan Luo,et al.  Progressive Interpolation based on Catmull‐Clark Subdivision Surfaces , 2008, Comput. Graph. Forum.

[25]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[26]  Seungyong Lee,et al.  Displaced subdivision surfaces of animated meshes , 2010, Comput. Graph..

[27]  Hongwei Lin,et al.  Quality guaranteed all-hex mesh generation by a constrained volume iterative fitting algorithm , 2015, Comput. Aided Des..

[28]  John Amanatides,et al.  A Fast Voxel Traversal Algorithm for Ray Tracing , 1987, Eurographics.

[29]  Helmut Pottmann,et al.  The Isophotic Metric and Its Application to Feature Sensitive Morphology on Surfaces , 2004, ECCV.

[30]  Tony DeRose,et al.  Piecewise smooth surface reconstruction , 1994, SIGGRAPH.

[31]  Stephen Lin,et al.  Generalized Displacement Maps , 2004, Rendering Techniques.

[32]  JungHyun Han,et al.  GPU-optimized indirect scalar displacement mapping , 2013, Comput. Aided Des..

[33]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[34]  Matthias Nießner,et al.  Real‐Time Rendering Techniques with Hardware Tessellation , 2016, Comput. Graph. Forum.

[35]  Eric Keller Introducing ZBrush 4 , 2008 .