Thermodynamic and Thermoelectric properties of FeCrTiZ (Z=Si, Ge) quaternary Heusler compounds

[1]  Kulwinder Kaur,et al.  First-principles calculations on the electronic structure and thermoelectric properties of quaternary Heusler compounds: LiScPtSi and LiScPdGe , 2022, Materials Today Communications.

[2]  G. Kalpana,et al.  Investigation of novel quaternary Heusler alloys XRuCrZ (X = Co, Ni, Rh, and Pd; Z = Si and Ge) via first-principles calculation for spintronics and thermoelectric applications , 2022, AIP Advances.

[3]  H. Labrim,et al.  Electronic, Optical and Thermoelectric Properties of the Csmf3 (M= Si or Ge) Fluoro-Perovskites , 2022, SSRN Electronic Journal.

[4]  B. Hamad,et al.  Lattice Dynamics, Mechanical Properties, Electronic Structure and Magnetic Properties of Equiatomic Quaternary Heusler Alloys CrTiCoZ (Z = Al, Si) Using First Principles Calculations , 2022, Materials.

[5]  B. Hamad,et al.  First-principles investigations of the electronic, magnetic and thermoelectric properties of VTiRhZ (Z= Al, Ga, In) Quaternary Heusler alloys , 2021, Materials Chemistry and Physics.

[6]  R. Adhikari,et al.  Prediction of half-metallicity and spin-gapless semiconducting behavior in the new series of FeCr-based quaternary Heusler alloys: an ab initio study , 2021, 2106.03026.

[7]  H. Labrim,et al.  A DFT study of the equiatomic quaternary Heusler alloys ZnCdXMn (X=Pd, Ni or Pt) , 2021 .

[8]  H. Labrim,et al.  Half-Metallicity and Magnetism in the Full Heusler Alloy Fe2MnSn with L21 and XA Stability Ordering Phases , 2021, Journal of Low Temperature Physics.

[9]  H. Labrim,et al.  A Monte Carlo study of the yttrium-based Heusler alloys: Y2CrGa and YFeCrGa , 2020, Multidiscipline Modeling in Materials and Structures.

[10]  M. Rizwan,et al.  Determination of phase stability, half metallicity, mechanical and thermal behavior of Fe based quaternary Heusler alloys , 2020 .

[11]  H. Labrim,et al.  Phase diagrams, electronic and magnetic properties of the quaternary Heusler alloy NbRhCrAl , 2019, Chinese Journal of Physics.

[12]  H. Labrim,et al.  Magnetic properties of the Heusler compound CoFeMnSi: Monte Carlo simulations , 2019, Physica A: Statistical Mechanics and its Applications.

[13]  Wenhong Wang,et al.  Highly-dispersive spin gapless semiconductors in rare-earth-element contained quaternary Heusler compounds , 2017 .

[14]  H. Hou,et al.  First-principles study of the nickel–silicon binary compounds under pressure , 2015 .

[15]  Yong Liu,et al.  First-principles study of structural and electronic properties of C14-type Laves phase Al2Zr and Al2Hf , 2014 .

[16]  Gerrit E. W. Bauer,et al.  Spin Seebeck power generators , 2013, 1311.6195.

[17]  G. Fecher,et al.  Electronic, structural, and magnetic properties of the half-metallic ferromagnetic quaternary Heusler compounds CoFeMnZ (Z = Al, Ga, Si, Ge) , 2011 .

[18]  A. Otero-de-la-Roza,et al.  Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation , 2011, Comput. Phys. Commun..

[19]  A. Otero-de-la-Roza,et al.  Gibbs2: A new version of the quasi-harmonic model code. I. Robust treatment of the static data , 2011, Comput. Phys. Commun..

[20]  P. Blaha,et al.  Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. , 2009, Physical review letters.

[21]  David J. Singh,et al.  BoltzTraP. A code for calculating band-structure dependent quantities , 2006, Comput. Phys. Commun..

[22]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[23]  Víctor Luaña,et al.  GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model☆ , 2004 .

[24]  N. Papanikolaou,et al.  Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys , 2002 .

[25]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[26]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[27]  Singh,et al.  Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation , 1993, Physical review. B, Condensed matter.

[28]  Jacobsen,et al.  Role of nonlocal exchange correlation in activated adsorption. , 1993, Physical review letters.

[29]  Axel D. Becke,et al.  Density-functional thermochemistry. I. The effect of the exchange-only gradient correction , 1992 .

[30]  K.H.J. Buschow,et al.  New Class of Materials: Half-Metallic Ferromagnets , 1983 .

[31]  Erich Wimmer,et al.  Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O 2 molecule , 1981 .

[32]  Hans‐Uwe Schuster,et al.  Zur Kenntnis farbiger ternärer und quaternärer Zintl-Phasen / Coloured Ternary and Quaternary Zintl-Phases , 1980 .

[33]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[34]  B. Lundqvist,et al.  Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism , 1976 .

[35]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Linus Pauling,et al.  The Nature of the Interatomic Forces in Metals , 1938 .

[37]  John C. Slater,et al.  The Ferromagnetism of Nickel , 1936 .

[38]  G. A. Slack,et al.  The Thermal Conductivity of Nonmetallic Crystals , 1979 .

[39]  G. A. Slack,et al.  Nonmetallic crystals with high thermal conductivity , 1973 .