Evaluating the Wind-Induced Mechanical Noise on the InSight Seismometers

The SEIS (Seismic Experiment for Interior Structures) instrument onboard the InSight mission to Mars is the critical instrument for determining the interior structure of Mars, the current level of tectonic activity and the meteorite flux. Meeting the performance requirements of the SEIS instrument is vital to successfully achieve these mission objectives. Here we analyse in-situ wind measurements from previous Mars space missions to understand the wind environment that we are likely to encounter on Mars, and then we use an elastic ground deformation model to evaluate the mechanical noise contributions on the SEIS instrument due to the interaction between the Martian winds and the InSight lander. Lander mechanical noise maps that will be used to select the best deployment site for SEIS once the InSight lander arrives on Mars are also presented. We find the lander mechanical noise may be a detectable signal on the InSight seismometers. However, for the baseline SEIS deployment position, the noise is expected to be below the total noise requirement >97%$>97~\%$ of the time and is, therefore, not expected to endanger the InSight mission objectives.

[1]  Ralph D. Lorenz,et al.  Modeling of Ground Deformation and Shallow Surface Waves Generated by Martian Dust Devils and Perspectives for Near-Surface Structure Inversion , 2017 .

[2]  Christian Krause,et al.  InSight: Measuring the Martian Heat Flow Using the Heat Flow and Physical Properties Package (HP^3) , 2012 .

[3]  D. L. Anderson,et al.  Martian wind activity detected by a seismometer at Viking Lander 2 site , 1979 .

[4]  L. Landberg,et al.  The Boundary Layer of Mars: Fluxes, Stability, Turbulent Spectra, and Growth of the Mixed Layer , 1994 .

[5]  E. Millour,et al.  The Mars Climate Database (MCD version 5.2) , 2015 .

[6]  S. Calcutt,et al.  Seismic Coupling of Short-Period Wind Noise Through Mars’ Regolith for NASA’s InSight Lander , 2017 .

[7]  Paul S. Smith,et al.  Winds at the Phoenix landing site , 2010 .

[8]  R. Lorenz Martian surface wind speeds described by the Weibull distribution , 1996 .

[9]  P. Lognonné 10.03 – Planetary Seismology , 2015 .

[10]  David Mimoun,et al.  Estimations of the Seismic Pressure Noise on Mars Determined from Large Eddy Simulations and Demonstration of Pressure Decorrelation Techniques for the Insight Mission , 2017, Space Science Reviews.

[11]  S. Larsen,et al.  Telltale wind indicator for the Mars Phoenix lander , 2008 .

[12]  H. Tsoar,et al.  Bagnold, R.A. 1941: The physics of blown sand and desert dunes. London: Methuen , 1994 .

[13]  H. Heywood The Physics of Blown Sand and Desert Dunes , 1941, Nature.

[14]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[15]  Don L. Anderson,et al.  Seismology on Mars , 1977 .

[16]  S. Timoshenko,et al.  Theory of Elasticity (3rd ed.) , 1970 .

[17]  James R. Murphy,et al.  Results of the Imager for Mars Pathfinder windsock experiment , 2000 .

[18]  P. Taylor,et al.  Initial analysis of air temperature and related data from the Phoenix MET station and their use in estimating turbulent heat fluxes , 2010 .

[19]  Philippe Lognonné,et al.  Ultra broad band seismology on InterMarsNet , 1996 .

[20]  A. Araya,et al.  Designing a torque-less wind shield for broadband observation of marsquakes , 2014 .

[21]  R. Bagnold,et al.  The Physics of Blown Sand and Desert Dunes , 1941 .

[22]  Stephen R. Lewis,et al.  THE MARTIAN ATMOSPHERIC BOUNDARY LAYER , 2011 .

[23]  R. Haberle,et al.  Characterizing the sensitivity of daytime turbulent activity on Mars with the MRAMS LES: Early results , 2010 .

[24]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[25]  Marco Pertile,et al.  Numerical study of lander effects on DREAMS scientific package measurements , 2014, 2014 IEEE Metrology for Aerospace (MetroAeroSpace).

[26]  David Mimoun,et al.  The Noise Model of the SEIS Seismometer of the InSight Mission to Mars , 2017 .

[27]  L. Landberg,et al.  Aspects Of The Atmospheric Surface Layers On Mars And Earth , 2002 .

[28]  Darius Nikanpour,et al.  Phoenix Mars Lander Mission: Thermal and CFD Modeling of the Meteorological Instrument based on Flight Data , 2010 .

[29]  S. Larsen,et al.  The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment. , 1997, Science.

[30]  R. Lorenz Planetary seismology—Expectations for lander and wind noise with application to Venus , 2012 .

[31]  Tom Hoffman,et al.  InSight: Mission to Mars , 2018, 2018 IEEE Aerospace Conference.

[32]  G. C. Greene,et al.  Atmospheric measurements on Mars - The Viking meteorology experiment , 1976 .

[33]  E. Herrin,et al.  Ground Motions associated with Acoustic Waves , 1971 .

[34]  Gordon G. Sorrells,et al.  A Preliminary Investigation into the Relationship between Long-Period Seismic Noise and Local Fluctuations in the Atmospheric Pressure Field , 2010 .