Some necessary and sufficient conditions for k-separability of multipartite pure states

The detection of entanglement for quantum states in multipartite systems is very significant. In this paper, we firstly give a necessary and sufficient condition for k-separability$$(2\le k\le m)$$(2≤k≤m) of m-partite pure states. Furthermore, we derive some equivalent conditions for k-separability of pure states in any multipartite quantum systems of finite or infinite dimension. Lastly, we give some examples to explain the application of our results.

[1]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[2]  Michael A. Nielsen,et al.  Quantum Computation and Quantum Information Theory , 2000 .

[3]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[4]  Zhi-Xi Wang,et al.  Deterministic secure direct communication using GHZ states and swapping quantum entanglement , 2004, quant-ph/0406082.

[5]  M. Huber,et al.  Criterion for K-separability in mixed multipartite states , 2010, 1002.2953.

[6]  Shi-Yao Zhu,et al.  Separability Criterion for Bipartite States and Its Generalization to Multipartite Systems , 2012, 1212.0082.

[7]  S. Fei,et al.  Inequalities detecting entanglement for arbitrary bipartite systems , 2014, 1406.3578.

[9]  Daowen Qiu,et al.  An entanglement measure based on two-order minors , 2009 .

[10]  S. Fei,et al.  Entanglement Detection Using Mutually Unbiased Measurements , 2014, 1407.0314.

[11]  P. Horodecki Separability criterion and inseparable mixed states with positive partial transposition , 1997, quant-ph/9703004.

[12]  Ming Li,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Bell Inequality, Separability and Entanglement Distillation Bell Inequality, Separability and Entanglement Distillation , 2022 .

[13]  T. Gao,et al.  Measure of multipartite entanglement with computable lower bounds , 2012, 1206.6669.

[14]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[15]  Oliver Rudolph Computable Cross-norm Criterion for Separability , 2004 .

[16]  T. Gao,et al.  Efficient k-separability criteria for mixed multipartite quantum states , 2012, 1204.2864.

[17]  Ling-An Wu,et al.  A matrix realignment method for recognizing entanglement , 2003, Quantum Inf. Comput..

[18]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[19]  J. Hou,et al.  Sufficient and necessary conditions of separability for bipartite pure states in infinite-dimensional systems , 2011 .

[20]  C. H. Bennett,et al.  Quantum Information and Computation , 1995 .

[21]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[22]  M. Nielsen,et al.  Separable states are more disordered globally than locally. , 2000, Physical review letters.

[23]  Oliver Rudolph Further Results on the Cross Norm Criterion for Separability , 2005, Quantum Inf. Process..

[24]  T. Gao,et al.  Detection of genuinely entangled and nonseparable n-partite quantum states , 2010, 1007.4493.

[25]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[26]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[27]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[28]  M. Nielsen,et al.  Interdisciplinary Physics: Biological Physics, Quantum Information, etc. , 2001 .

[29]  Géza Tóth,et al.  Detecting multiparticle entanglement of Dicke states. , 2014, Physical review letters.