Modeling Dynamic PET-SPECT Studies in the Wavelet Domain

This work develops a theoretical framework and corresponding algorithms for the modeling of dynamic PET-SPECT studies both in time and space. The problem of estimating the spatial dimension is solved by applying the wavelet transform to each scan of the dynamic sequence and then performing the kinetic modeling and statistical analysis in the wavelet domain. On reconstruction through the inverse wavelet transform, one obtains parametric images that are consistent estimates of the spatial patterns of the kinetic parameter of interest. The theoretical setup allows the use of linear techniques currently used in PET-SPECT for kinetic analysis. The method is applied to artificial and real data sets. The application to dynamic PET-SPECT studies was performed both for validation purposes, when the spatial patterns are known, and for illustration of the advantages offered by the technique in case of tracers with an unknown pattern of distribution.

[1]  F. David,et al.  Parameter Estimation in Engineering and Science , 1977 .

[2]  Rainer von Sachs,et al.  Nonparametric curve estimation by wavelet thresholding withlocally stationary errorsMay 5 , 1998 , 1998 .

[3]  D. Donoho,et al.  Translation-Invariant DeNoising , 1995 .

[4]  Michael H. Neumann,et al.  Wavelet Thresholding: Beyond the Gaussian I.I.D. Situation , 1995 .

[5]  Robert D. Nowak,et al.  Wavelet-domain filtering for photon imaging systems , 1999, IEEE Trans. Image Process..

[6]  James V. Beck,et al.  Parameter Estimation in Engineering and Science , 1977 .

[7]  T. Jones,et al.  Parametric image reconstruction using spectral analysis of PET projection data. , 1998, Physics in medicine and biology.

[8]  E. Mackenzie,et al.  Imaging of human brain lesions with an omega 3 site radioligand. , 1988, Annals of neurology.

[9]  B. Silverman,et al.  The Stationary Wavelet Transform and some Statistical Applications , 1995 .

[10]  A. Tsybakov,et al.  Wavelets, approximation, and statistical applications , 1998 .

[11]  Chulhee Lee,et al.  Registration and statistical analysis of PET images using the wavelet transform , 1995 .

[12]  C S Patlak,et al.  Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-Time Uptake Data , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[13]  N. Volkow,et al.  Distribution Volume Ratios without Blood Sampling from Graphical Analysis of PET Data , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[14]  Michael Unser,et al.  Statistical analysis of image differences by wavelet decomposition , 1994, Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[15]  R. Dahlhaus Fitting time series models to nonstationary processes , 1997 .

[16]  Eero P. Simoncelli Shiftable multi-scale transforms [or "What's wrong with orthonormal wavelets"] , 1992 .

[17]  G. Milliken Nonlinear Regression Analysis and Its Applications , 1990 .

[18]  M. Daube-Witherspoon,et al.  Quantitative functional brain imaging with positron emission tomography , 1998 .

[19]  R. Frackowiak,et al.  Monitoring by PET of macrophage accumulation in brain after ischaemic stroke , 1992, The Lancet.

[20]  Richard G. Baraniuk,et al.  Wavelet domain filtering for photon imaging systems , 1997, Optics & Photonics.

[21]  R B Banati,et al.  PK (‘peripheral benzodiazepine’) – binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK 11195 binding to activated microglia , 1997, Journal of neurocytology.

[22]  Rainer von Sachs,et al.  Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra , 1997 .

[23]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[24]  Nouna Kettaneh,et al.  Statistical Modeling by Wavelets , 1999, Technometrics.

[25]  C. Burrus,et al.  Noise reduction using an undecimated discrete wavelet transform , 1996, IEEE Signal Processing Letters.

[26]  I. Johnstone,et al.  Wavelet Threshold Estimators for Data with Correlated Noise , 1997 .

[27]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[28]  G. Battle A block spin construction of ondelettes Part II: The QFT connection , 1988 .

[29]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[30]  David J. Schlyer,et al.  Graphical Analysis of Reversible Radioligand Binding from Time—Activity Measurements Applied to [N-11C-Methyl]-(−)-Cocaine PET Studies in Human Subjects , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[31]  C. Patlak,et al.  Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-Time Uptake Data. Generalizations , 1985, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[32]  J D Watson,et al.  Nonparametric Analysis of Statistic Images from Functional Mapping Experiments , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[33]  F E Turkheimer,et al.  Multiresolution Analysis of Emission Tomography Images in the Wavelet Domain , 1999, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[34]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[36]  J. Mazziotta,et al.  Positron emission tomography and autoradiography: Principles and applications for the brain and heart , 1985 .

[37]  F E Turkheimer,et al.  [11C](R)-PK11195 positron emission tomography imaging of activated microglia in vivo in Rasmussen’s encephalitis , 1999, Neurology.

[38]  Edward H. Adelson,et al.  Shiftable multiscale transforms , 1992, IEEE Trans. Inf. Theory.

[39]  D. Donoho Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .

[40]  D. Barber The use of principal components in the quantitative analysis of gamma camera dynamic studies. , 1980, Physics in medicine and biology.

[41]  R B Banati The immune response in the Alzheimer's disease brain. , 1997, Biochemical Society transactions.

[42]  R. Myers Quantification of brain function using PET , 1996 .

[43]  Philippe Cornu,et al.  Imaging of human brain lesions with an ω3 site radioligand , 1988 .

[44]  Albert Gjedde,et al.  High‐ and Low‐Affinity Transport of D‐Glucose from Blood to Brain , 1981, Journal of neurochemistry.

[45]  G. Battle A block spin construction of ondelettes. Part I: Lemarié functions , 1987 .

[46]  R S Lawson,et al.  Application of mathematical methods in dynamic nuclear medicine studies. , 1999, Physics in medicine and biology.