Synthesis and Properties of Poly(1-trimethylsilyl-1-propyne) Containing Quaternary Ammonium Salts with Methyl and Ethyl Substituents

[1]  Jiayin Yuan,et al.  Poly(ionic liquid)s: Platform for CO2 capture and catalysis , 2019, Current Opinion in Green and Sustainable Chemistry.

[2]  T. Vlugt,et al.  CO2 stripping from ionic liquid at elevated pressures in gas-liquid membrane contactor , 2018 .

[3]  K. Hawboldt,et al.  A review on common adsorbents for acid gases removal: Focus on biochar , 2018 .

[4]  E. Alper,et al.  Solid amine sorbents for CO2 capture by chemical adsorption: A review , 2017 .

[5]  M. Shahrom,et al.  CO2 capture by task specific ionic liquids (TSILs) and polymerized ionic liquids (PILs and AAPILs) , 2016 .

[6]  G. Bondarenko,et al.  Synthesis and properties of brominated poly(1-trimethylsilyl-1-propyne) , 2016, Russian Chemical Bulletin.

[7]  Rached Ben-Mansour,et al.  Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review , 2016 .

[8]  Peiyong Sun,et al.  Study on mechanism and ability of removal thiol from methyl tert-butyl ether by ionic liquid [BIm]Cl/CuCl , 2015 .

[9]  V. Abetz,et al.  Influence of Poly(ethylene glycol) Segment Length on CO2 Permeation and Stability of PolyActive Membranes and Their Nanocomposites with PEG POSS. , 2015, ACS applied materials & interfaces.

[10]  T. Hashimoto,et al.  Highly CO2-permeable and -permselective poly(diphenylacetylene)s having imidazolium salts: Synthesis, characterization, gas permeation properties, and effects of counter anion , 2013 .

[11]  M. Antonietti,et al.  Poly(ionic liquid)s: An update , 2013 .

[12]  Y. Xiong,et al.  Novel imidazolium‐based poly(ionic liquid)s: preparation, characterization, and absorption of CO2 , 2012 .

[13]  Meihong Wang,et al.  Post-combustion CO2 capture with chemical absorption: A state-of-the-art review , 2011 .

[14]  Marcin Wojdyr,et al.  Fityk: a general-purpose peak fitting program , 2010 .

[15]  Enrico Drioli,et al.  Membrane technologies for CO2 separation , 2010 .

[16]  Haiqing Lin,et al.  Power plant post-combustion carbon dioxide capture: An opportunity for membranes , 2010 .

[17]  Gary T. Rochelle,et al.  Amine volatility in CO2 capture , 2010 .

[18]  Jason E. Bara,et al.  Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids , 2009 .

[19]  Allan Hart,et al.  Cryogenic CO2 capture in natural gas , 2009 .

[20]  L. Robeson,et al.  The upper bound revisited , 2008 .

[21]  Costas Tsouris,et al.  Separation of CO2 from Flue Gas: A Review , 2005 .

[22]  V. S. Khotimsky,et al.  Poly[1‐(trimethylgermyl)‐1‐propyne] and poly[1‐(trimethylsilyl)‐1‐propyne] with various geometries: Their synthesis and properties , 2003 .

[23]  Matthias Heuchel,et al.  Free Volume Distributions in Ultrahigh and Lower Free Volume Polymers: Comparison between Molecular Modeling and Positron Lifetime Studies , 2002 .

[24]  B. Freeman,et al.  Polymer characterization and gas permeability of poly(1‐trimethylsilyl‐1‐propyne) [PTMSP], poly(1‐phenyl‐1‐propyne) [PPP], and PTMSP/PPP blends , 1996 .

[25]  K. Peinemann,et al.  Effects of film thickness on density and gas permeation parameters of glassy polymers , 1996 .

[26]  J. G. Wijmans,et al.  The solution-diffusion model: a review , 1995 .

[27]  D. Pope,et al.  Sorption and Dilation of Poly(1-(trimethylsilyl)-1-propyne) by Carbon Dioxide and Methane , 1994 .

[28]  R. Srinivasan,et al.  Elucidating the mechanism (s) of gas transport in poly[1-(trimethylsilyl)-1-propyne] (PTMSP) membranes , 1994 .

[29]  E. M. Antipov,et al.  Comparative investigation of short‐range order in unbranched alkanes and polyethylene , 1976 .