Pattern definition of the p-efficiency concept

This study revisits the celebrated p-efficiency concept introduced by Prékopa (Z. Oper. Res. 34:441–461, 1990) and defines a p-efficient point (pLEP) as a combinatorial pattern. The new definition uses elements from the combinatorial pattern recognition field and is based on the combinatorial pattern framework for stochastic programming problems proposed in Lejeune (Stochastic programming e-print series (SPEPS) 2010-5, 2010). The approach is based on the binarization of the probability distribution, and the generation of a consistent partially defined Boolean function representing the combination (F,p) of the binarized probability distribution F and the enforced probability level p. A combinatorial pattern provides a compact representation of the defining characteristics of a pLEP and opens the door to new methods for the generation of pLEPs. We show that a combinatorial pattern representing a pLEP constitutes a strong and prime pattern and we derive it through the solution of an integer programming problem. Next, we demonstrate that the (finite) collection of pLEPs can be represented as a disjunctive normal form (DNF). We propose a mixed-integer programming formulation allowing for the construction of the DNF that is shown to be prime and irreducible. We illustrate the proposed method on a problem studied by Prékopa (Stochastic programming: handbook in operations research and management science, vol. 10, Elsevier, Amsterdam, 2003).

[1]  Andrzej Ruszczynski,et al.  Probabilistic programming with discrete distributions and precedence constrained knapsack polyhedra , 2002, Math. Program..

[2]  Toshihide Ibaraki,et al.  Monotone Extensions of Boolean Data Sets , 1997, ALT.

[3]  Giuseppe Carlo Calafiore,et al.  Uncertain convex programs: randomized solutions and confidence levels , 2005, Math. Program..

[4]  Sergiu Rudeanu Boolean functions and equations , 1974 .

[5]  Andrzej Ruszczynski,et al.  An Efficient Trajectory Method for Probabilistic Production-Inventory-Distribution Problems , 2007, Oper. Res..

[6]  José Ruiz-Shulcloper,et al.  Logical Combinatorial Pattern Recognition: A Review , 2002 .

[7]  Toshihide Ibaraki,et al.  An Implementation of Logical Analysis of Data , 2000, IEEE Trans. Knowl. Data Eng..

[8]  Peter L. Hammer,et al.  Spanned patterns for the logical analysis of data , 2006, Discret. Appl. Math..

[9]  Tamás Rapcsák,et al.  New Trends in Mathematical Programming , 1998 .

[10]  Hong Seo Ryoo,et al.  MILP approach to pattern generation in logical analysis of data , 2009, Discret. Appl. Math..

[11]  Miguel A. Lejeune,et al.  Pattern-Based Modeling and Solution of Probabilistically Constrained Optimization Problems , 2012, Oper. Res..

[12]  András Prékopa,et al.  Contributions to the theory of stochastic programming , 1973, Math. Program..

[13]  Peter L. Hammer,et al.  Boolean Functions - Theory, Algorithms, and Applications , 2011, Encyclopedia of mathematics and its applications.

[14]  M. A. Lejeune Preprocessing techniques and column generation algorithms for stochastically efficient demand , 2008, J. Oper. Res. Soc..

[15]  J Figueira,et al.  Stochastic Programming , 1998, J. Oper. Res. Soc..

[16]  Darinka Dentcheva,et al.  Dual methods for probabilistic optimization problems* , 2004, Math. Methods Oper. Res..

[17]  Peter L. Hammer,et al.  Accelerated algorithm for pattern detection in logical analysis of data , 2006, Discret. Appl. Math..

[18]  Miguel Lejeune Pattern-Based Modeling and Solution of Probabilistically Constrained Optimization Problems , 2012 .

[19]  George L. Nemhauser,et al.  An integer programming approach for linear programs with probabilistic constraints , 2010, Math. Program..

[20]  A. Charnes,et al.  Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil , 1958 .

[21]  Peter L. Hammer,et al.  Pareto-optimal patterns in logical analysis of data , 2004, Discret. Appl. Math..

[22]  José Francisco Martínez Trinidad,et al.  The logical combinatorial approach to pattern recognition, an overview through selected works , 2001, Pattern Recognit..

[23]  Klaus Truemper,et al.  Design of logic-based intelligent systems , 2004 .

[24]  H. Kuhn Proceedings of the Princeton Symposium on Mathematical Programming , 1971 .

[25]  Evangelos Triantaphyllou,et al.  Inference of Monotone Boolean Functions , 2009, Encyclopedia of Optimization.

[26]  A. Prékopa,et al.  Programming Under Probabilistic Constraint with Discrete Random Variable , 1998 .

[27]  Peter L. Hammer,et al.  Logical analysis of data—An overview: From combinatorial optimization to medical applications , 2006, Ann. Oper. Res..

[28]  András Prékopa,et al.  Dual method for the solution of a one-stage stochastic programming problem with random RHS obeying a discrete probability distribution , 1990, ZOR Methods Model. Oper. Res..

[29]  Rocco H. Urbano,et al.  A Topological Method for the Determination of the Minimal Forms of a Boolean Function , 1956, IRE Trans. Electron. Comput..

[30]  Patrizia Beraldi,et al.  A branch and bound method for stochastic integer problems under probabilistic constraints , 2002, Optim. Methods Softw..

[31]  Darinka Dentcheva,et al.  Concavity and efficient points of discrete distributions in probabilistic programming , 2000, Math. Program..

[32]  Cem Iyigun,et al.  Probabilistic programming models for traffic incident management operations planning , 2012, Ann. Oper. Res..

[33]  Toshihide Ibaraki,et al.  Logical analysis of numerical data , 1997, Math. Program..

[34]  Peter L. Hammer,et al.  Logical Analysis of Data: From Combinatorial Optimization to Medical Applications , 2005 .

[35]  András Prékopa,et al.  ON PROBABILISTIC CONSTRAINED PROGRAMMING , 2015 .

[36]  Nilay Noyan,et al.  Mathematical programming approaches for generating p-efficient points , 2010, Eur. J. Oper. Res..

[37]  Toshihide Ibaraki Boolean Functions: Partially defined Boolean functions , 2011 .