Modeling diffraction of a polarized light by three-dimensional nonlinear spiral phase in the near zone

We investigate the diffraction of a polarized light by nonlinear spiral phase plate (NSPP) in the near zone, taking into account the three-dimensional structure of the optical element. The simulation of the NSPP diffraction is based on the finite difference time domain (FDTD) method. The results of numerical simulation of the NSPP diffraction for both homogeneous (linear and circular) and inhomogeneous (radial and azimuthal) polarized light are presented.

[1]  Svetlana N. Khonina,et al.  Polarization conversion under focusing of vortex laser beams along the axis of anisotropic crystals , 2017 .

[2]  Miroslav Miler,et al.  Fabrication and properties of light spiral filters , 1998, Other Conferences.

[3]  Y. Kivshar,et al.  Spatially engineered polarization states and optical vortices in uniaxial crystals. , 2010, Optics express.

[4]  J. Lin,et al.  High-power efficient multiple optical vortices in a single beam generated by a kinoform-type spiral phase plate. , 2006, Applied optics.

[5]  K. T. Gahagan,et al.  Optical vortex trapping of particles , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[6]  Ryuji Morita,et al.  Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures , 2012, Nano letters.

[7]  M. Koshiba,et al.  Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[8]  A. Porfirev,et al.  Photonic nanohelix generated by a binary spiral axicon. , 2016, Applied optics.

[9]  A. Porfirev,et al.  Properties of vortex light fields generated by generalized spiral phase plates , 2020 .

[10]  G. Cincotti,et al.  Circularly polarized beams and vortex generation in uniaxial media. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[12]  A. Porfirev,et al.  Aberration laser beams with autofocusing properties. , 2018, Applied optics.

[13]  Radek Čelechovský,et al.  Optical implementation of the vortex information channel , 2007 .

[14]  A. Porfirev,et al.  Refractive twisted microaxicons. , 2020, Optics letters.

[15]  A. Porfirev,et al.  AVEFRONT ANALYSIS BASED ON ZERNIKE POLYNOMIALS , 2016 .

[16]  Victor V. Kotlyar,et al.  Simple optical vortices formed by a spiral phase plate , 2007 .

[17]  S. Bernet,et al.  Shadow effects in spiral phase contrast microscopy. , 2005, Physical review letters.

[18]  Victor A. Soifer,et al.  Optical micromanipulation using DOEs matched with optical vorticies , 2006, SPIE Photonics Europe.

[19]  Kishan Dholakia,et al.  Atom guiding along Laguerre-Gaussian and Bessel light beams , 2000 .

[20]  P. Munro,et al.  The use of Gauss-Laguerre vector beams in STED microscopy. , 2004, Optics express.

[21]  Svetlana N. Khonina,et al.  A technique for simultaneous detection of individual vortex states of Laguerre–Gaussian beams transmitted through an aqueous suspension of microparticles , 2018, Optics and Lasers in Engineering.

[22]  Alexander G. Poleshchuk,et al.  Fabrication of kinoform optical elements , 1984 .

[23]  Caustics of Vortex Optical Beams , 2019, Doklady Physics.

[24]  Ilya Golub,et al.  How low can STED go? Comparison of different write-erase beam combinations for stimulated emission depletion microscopy. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  Jixiong Pu,et al.  Focus shaping of cylindrically polarized vortex beams by a high numerical-aperture lens , 2009 .

[26]  Svetlana N. Khonina,et al.  Optical rotation of microparticles in hypergeometric beams formed by diffraction optical elements with multilevel microrelief , 2013 .

[27]  Gianluca Ruffato,et al.  Fabrication and characterization of high-quality spiral phase plates for optical applications , 2015 .

[28]  Ilya Golub,et al.  Tighter focus for ultrashort pulse vector light beams: change of the relative contribution of different field components to the focal spot upon pulse shortening. , 2018, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  Alexey P Porfirev,et al.  Polarization conversion when focusing cylindrically polarized vortex beams. , 2016, Scientific reports.

[30]  S. V. Karpeev,et al.  Experimental excitation and detection of angular harmonics in a step-index optical fiber , 2007, Optical Memory and Neural Networks.

[31]  Ziyang Chen,et al.  Beam-spreading and topological charge of vortex beams propagating in a turbulent atmosphere , 2009 .

[32]  Daomu Zhao,et al.  Propagation of the power-exponent-phase vortex beam in paraxial ABCD system. , 2016, Optics express.

[33]  Mali Gong,et al.  Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities , 2019, Light: Science & Applications.

[34]  P. A. Khorin,et al.  Wavefront aberration analysis with a multi-order diffractive optical element , 2017 .

[35]  Min Gu,et al.  Focusing of doughnut laser beams by a high numerical-aperture objective in free space. , 2003, Optics express.

[36]  Michael V Berry,et al.  Optical vortices evolving from helicoidal integer and fractional phase steps , 2004 .

[37]  Ehsan A. Akhlaghi,et al.  SSPIM: a beam shaping toolbox for structured selective plane illumination microscopy , 2018, Scientific Reports.

[38]  A. Willner,et al.  Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers , 2013, Science.

[39]  Alexey P Porfirev,et al.  Study of propagation of vortex beams in aerosol optical medium. , 2017, Applied optics.

[40]  S. G. Volotovskiy,et al.  Influence of optical forces induced by paraxial vortex Gaussian beams on the formation of a microrelief on carbazole-containing azopolymer films. , 2020, Applied optics.

[41]  Kishan Dholakia,et al.  A New Twist for Materials Science: The Formation of Chiral Structures Using the Angular Momentum of Light , 2019, Advanced Optical Materials.

[42]  Cesare Barbieri,et al.  Fabrication of a three-dimensional optical vortices phase mask for astronomy by means of electron-beam lithography , 2009 .

[43]  J. P. Woerdman,et al.  Production and characterization of spiral phase plates for optical wavelengths. , 2004, Applied optics.

[44]  Alexey P. Porfirev,et al.  Diffraction patterns with mth order symmetry generated by sectional spiral phase plates , 2015 .

[45]  S. Khonina,et al.  Spectral control of the orbital angular momentum of a laser beam based on 3D properties of spiral phase plates fabricated for an infrared wavelength. , 2020, Optics express.

[46]  Hanben Niu,et al.  Generation of femtosecond optical vortices using a single refractive optical element , 2006 .

[47]  J. Pu,et al.  Investigation on the scintillation reduction of elliptical vortex beams propagating in atmospheric turbulence. , 2011, Optics express.

[48]  Jianlin Zhao,et al.  Spiral autofocusing Airy beams carrying power-exponent-phase vortices. , 2014, Optics express.

[49]  Svetlana N. Khonina,et al.  Vortex beams with high-order cylindrical polarization: features of focal distributions , 2019, Applied Physics B.

[50]  Marco W. Beijersbergen,et al.  Helical-wavefront laser beams produced with a spiral phaseplate , 1994 .

[51]  I. V. Basistiy,et al.  Synthesis and analysis of optical vortices with fractional topological charges , 2004 .

[52]  Hirofumi Hidai,et al.  Picosecond optical vortex pulse illumination forms a monocrystalline silicon needle , 2016, Scientific Reports.

[53]  Peter G. Kazansky,et al.  Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass , 2011 .

[54]  Valerii P Aksenov,et al.  Increase in laser beam resistance to random inhomogeneities of atmospheric permittivity with an optical vortex included in the beam structure. , 2012, Applied optics.

[55]  Liang Yang,et al.  Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material , 2016, Light: Science & Applications.

[56]  Sergey Fomchenkov,et al.  Chirality of laser-printed plasmonic nanoneedles tunable by tailoring spiral-shape pulses , 2019, Applied Surface Science.

[57]  Victor A. Soifer,et al.  Optical Vortices in a Fiber: Mode Division Multiplexing and Multimode Self-Imaging , 2012 .

[58]  Lars Egil Helseth,et al.  Optical vortices in focal regions , 2004 .

[59]  P. Khorin,et al.  Analysis wavefront propagating in free space based on the Zernike polynomials and Gauss-Laguerre modes expansion , 2018, Journal of Physics: Conference Series.

[60]  Xi Chen,et al.  Dual-LP11 mode 4×4 MIMO-OFDM transmission over a two-mode fiber. , 2011, Optics express.

[61]  Christoph H. Keitel,et al.  Fields of an ultrashort tightly focused laser pulse , 2015, 1504.00988.

[62]  Svetlana N. Khonina,et al.  Simple phase optical elements for narrowing of a focal spot in high-numerical-aperture conditions , 2013 .