Hyperdust: An advanced in-situ detection and chemical analysis of microparticles in space

The goal of dust astronomy is to uncover the information contained in individual cosmic dust grains. A series of previous dust instruments lead to novel in-situ instrumentation suitable for determining the origin and chemical and elemental composition of dust particles. A new instrument was developed that combines large target area, high mass-resolution, and accurate trajectory determination. The Hyperdust instrument is a combination of a Dust Trajectory Sensor (DTS) with an in-situ chemical analyzer. Dust particles' trajectories are determined by the measurement of induced charge signals, when a charged grain flies through a position-sensitive electrode system. A modern DTS can measure dust particles as small as 0.3 μm in radius and dust speeds up to 100 km/s. The chemical analyzer with ~0.1 m2 sensitive target area has a mass resolution > 200. The Hyperdust instrument is capable of distinguishing interstellar and interplanetary grains based on their trajectory information. The Hyperdust instrument is currently being developed to Technical Readiness Level (TRL) 6 funded by NASA's MatISSE program to be a low-mass, high performance instrument for future in-situ exploration. This paper describes its current state of development.

[1]  H. Fechtig,et al.  Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft , 1993, Nature.

[2]  E. Grün,et al.  Compositional mapping of planetary moons by mass spectrometry of dust ejecta , 2011 .

[3]  E. Igenbergs,et al.  The Cassini Cosmic Dust Analyzer , 2004 .

[4]  E. Grün,et al.  DEVELOPMENT OF AN ADVANCED DUST TELESCOPE , 2004 .

[5]  C. Woodward,et al.  Silicate Mineralogy of the Dust in the Inner Coma of Comet C/1995 01 (Hale-Bopp) Pre- and Postperihelion , 1999 .

[6]  M. Sephton,et al.  Extraterrestrial Organic Matter and the Detection of Life , 2008 .

[7]  Michael E. Brown,et al.  No sodium in the vapour plumes of Enceladus , 2009, Nature.

[8]  Sascha Kempf,et al.  Mass spectrometry of hyper-velocity impacts of organic micrograins. , 2009, Rapid communications in mass spectrometry : RCM.

[9]  Kentaro Uesugi,et al.  Elemental Compositions of Comet 81P/Wild 2 Samples Collected by Stardust , 2006, Science.

[10]  Siegfried Auer,et al.  Two high resolution velocity vector analyzers for cosmic dust particles , 1975 .

[11]  Sascha Kempf,et al.  Characteristics of a dust trajectory sensor. , 2008, The Review of scientific instruments.

[12]  F. R. Krueger,et al.  Cometary and Interstellar Dust Analyzer for comet Wild 2 , 2003 .

[13]  B. A. Mamyrin Time-of-flight mass spectrometry (concepts, achievements, and prospects) , 2001 .

[14]  F. Spahn,et al.  Impact-generated dust clouds around planetary satellites: asymmetry effects , 2003 .

[15]  S. Auer,et al.  Highly Transparent and Rugged Sensor for Velocity Determinations of Cosmic Dust Particles , 1994 .

[16]  F. Postberg,et al.  Novel instrument for Dust Astronomy: Dust Telescope , 2011, 2011 Aerospace Conference.

[17]  Elmar K. Jessberger,et al.  Chemical Properties of Cometary Dust and A Note on Carbon Isotopes , 1991 .

[18]  Harold F. Levison,et al.  COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS , 2009, 0909.4322.

[19]  E. Grün,et al.  Large area mass analyzer instrument for the chemical analysis of interstellar dust particles. , 2007, The Review of scientific instruments.

[20]  T. Gombosi,et al.  Interstellar dust filtration at the heliospheric interface , 2000 .

[21]  E. Grün,et al.  Cassini between Earth and asteroid belt: first in-situ charge measurements of interplanetary grains , 2004 .

[22]  M. Landgraf,et al.  Aspects of the mass distribution of interstellar dust grains in the solar system from in situ measurements , 1999 .

[23]  E. Grün,et al.  A self-triggered dust trajectory sensor , 2010 .

[24]  W. Kratschmer,et al.  Dust in the local interstellar wind , 1999 .

[25]  J. Mathis,et al.  Dust Grain Size Distributions and the Abundance of Refractory Elements in the Diffuse Interstellar Medium , 1997 .

[26]  Th. Henning,et al.  Optical properties of oxide dust grains. , 1995 .

[27]  R. Srama,et al.  The flow of interstellar dust into the solar system , 2012 .

[28]  E. Grün,et al.  2002 Kuiper prize lecture: Dust Astronomy , 2005 .

[29]  R. Srama,et al.  A salt-water reservoir as the source of a compositionally stratified plume on Enceladus , 2011, Nature.

[30]  Konstantin V. Kholshevnikov,et al.  Impact-generated dust clouds around planetary satellites: spherically symmetric case , 2003 .

[31]  F. Postberg,et al.  Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus , 2009, Nature.

[32]  E. Grün,et al.  Dust trajectory sensor: accuracy and data analysis. , 2011, Review of Scientific Instruments.

[33]  T. Henning,et al.  Dust metamorphosis in the galaxy , 1995 .

[34]  R. Lallement,et al.  Northern-hemisphere observations of nearby interstellar gas : possible detection of the local cloud , 1992 .

[35]  E. Jessberger Rocky Cometary Particulates: Their Elemental, Isotopic and Mineralogical Ingredients , 1999 .

[36]  Michael E. Zolensky,et al.  Stardust: Comet and interstellar dust sample return mission , 2003 .

[37]  F. R. Krueger,et al.  The Cometary and Interstellar Dust Analyzer at Comet 81P/Wild 2 , 2004, Science.

[38]  M. Zolotov An oceanic composition on early and today's Enceladus , 2007 .

[39]  F. Spahn,et al.  Impact-generated dust clouds around planetary satellites: model versus Galileo data , 2005 .