A gradient flow approach to the Boltzmann equation

We show that the spatially homogeneous Boltzmann equation (with constant collision kernel) evolves as the gradient flow of the entropy with respect to a suitable geometry on the space of probability measures. This geometry is given by a new notion of distance between probability measures, which takes the collision process into account. As a first application, we obtain a novel time-discrete approximation scheme for the homogeneous Boltzmann equation.

[1]  A. Sznitman Équations de type de Boltzmann, spatialement homogènes , 1984 .

[2]  S. Serfaty,et al.  Gamma‐convergence of gradient flows with applications to Ginzburg‐Landau , 2004 .

[3]  J. Norris A consistency estimate for Kac's model of elastic collisions in a dilute gas , 2014, 1405.2742.

[4]  Serge Marguet,et al.  The Boltzmann Equation , 2017 .

[5]  Alexander Mielke,et al.  A gradient structure for reaction-diusion systems and for energy-drift-diu , 2011 .

[6]  Giuseppe Buttazzo,et al.  Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations , 1989 .

[7]  M. Mariani A Γ-convergence approach to large deviations , 2018 .

[8]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[9]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[10]  Eric A. Carlen,et al.  Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation , 1992 .

[11]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[12]  L. Ambrosio,et al.  Well posedness of Lagrangian flows and continuity equations in metric measure spaces , 2014, 1402.4788.

[13]  M. Kac Foundations of Kinetic Theory , 1956 .

[14]  D. Kinderlehrer,et al.  THE VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION , 1996 .

[15]  L. Desvillettes Boltzmann ’ s kernel and the spatially homogeneous Boltzmann equation , 2022 .

[16]  Alexander Mielke,et al.  A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems , 2011 .

[17]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[18]  Giuseppe Toscani,et al.  Sharp Entropy Dissipation Bounds and Explicit Rate of Trend to Equilibrium for the Spatially Homogeneous Boltzmann Equation , 1999 .

[19]  Giuseppe Savaré,et al.  A new class of transport distances between measures , 2008, 0803.1235.

[20]  Matthias Erbar Gradient flows of the entropy for jump processes , 2012, 1204.2190.

[21]  J. Maas Gradient flows of the entropy for finite Markov chains , 2011, 1102.5238.