The past, present, and future of atomic time and frequency

The early history of atomic time and frequency standards is reviewed. The most accurate and stable present standards are described. Prospective future improvements, particularly with trapped ions and atoms, are discussed. A historical perspective on this topic is provided. >

[1]  He Chun,et al.  Rotational energy transfer in I2*(B3Π) colliding with I2(X1Σ), Ar and He: Experiment and fitting law , 1986 .

[2]  A. Schawlow,et al.  Infrared and optical masers , 1958 .

[3]  I. Rabi,et al.  A New Method of Measuring Nuclear Magnetic Moment , 1938 .

[4]  I. Rabi,et al.  The Radiofrequency Spectra of Atoms Hyperfine Structure and Zeeman Effect in the Ground State of Li 6 , Li 7 , K 39 and K 41 , 1940 .

[5]  S. Millman,et al.  On the Radiofrequency Spectra of Sodium, Rubidium and Caesium , 1940 .

[6]  L. Cutler,et al.  Thermalization of199Hg ion macromotion by a light background gas in an RF quadrupole trap , 1985 .

[7]  R. Dicke The effect of collisions upon the Doppler width of spectral lines , 1953 .

[8]  Phillips,et al.  Observation of atoms laser cooled below the Doppler limit. , 1988, Physical review letters.

[9]  I. Rabi,et al.  An Electrical Quadrupole Moment of the Deuteron The Radiofrequency Spectra of HD and D 2 Molecules in a Magnetic Field , 1940 .

[10]  F. G. Major,et al.  Exchange-Collision Technique for the rf Spectroscopy of Stored Ions , 1968 .

[11]  A. DeMarchi,et al.  Progress Toward Optically Pumped Cesium Beam Frequency Standard , 1986, 40th Annual Symposium on Frequency Control.

[12]  Harold Metcalf,et al.  Laser cooling and electromagnetic trapping of neutral atoms , 1985 .

[13]  G. Werth,et al.  Trapped ion density distribution in the presence of He-buffer gas , 1981 .

[14]  Dalibard,et al.  Cooling atoms with stimulated emission. , 1986, Physical review letters.

[15]  H. Dehmelt Introduction to the Session on Trapped Ions , 1989 .

[16]  D. Wineland,et al.  Laser Spectroscopy of Trapped Atomic Ions , 1987, Science.

[17]  D. Backer,et al.  High-precision timing observations of the millisecond pulsar PSR1937 + 21 , 1985, Nature.

[18]  Daniel Kleppner,et al.  THEORY OF THE HYDROGEN MASER , 1962 .

[19]  T. Hänsch,et al.  Cooling of gases by laser radiation , 1975 .

[20]  Chu,et al.  Atom funnel for the production of a slow, high-density atomic beam. , 1990, Physical review letters.

[21]  I. Rabi,et al.  An Electrical Quadrupole Moment of the Deuteron , 1939 .

[22]  L. Maleki,et al.  New ion trap for frequency standard applications , 1989 .

[23]  Pritchard,et al.  Light traps using spontaneous forces. , 1986, Physical review letters.

[24]  N. Ramsey,et al.  History of Atomic Clocks. , 1983, Journal of research of the National Bureau of Standards.

[25]  H. Dehmelt,et al.  Monoion oscillator as potential ultimate laser frequency standard , 1982, IEEE Transactions on Instrumentation and Measurement.

[26]  R. Neugart,et al.  Nuclear spin and magnetic moment of 11Li , 1987 .

[27]  Norman F. Ramsey,et al.  A New Molecular Beam Resonance Method , 1949 .

[28]  Jon H. Shirley,et al.  A new cavity configuration for cesium beam primary frequency standards , 1988 .

[29]  J. Dalibard,et al.  Limit of Doppler cooling , 1989 .

[30]  Chu,et al.  Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. , 1985, Physical review letters.

[31]  Jon H. Shirley,et al.  Optically Pumped Small Cesium Beam Standards; A Status Report , 1985, 39th Annual Symposium on Frequency Control.

[32]  Alain Aspect,et al.  Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping: theoretical analysis , 1989 .

[33]  H. Dehmelt,et al.  Mono-Ion Oscillator as Potential Ultimate Laser Frequency Standard , 1981 .

[34]  P. Foman Atomic Clocks , 1982 .

[35]  H. Taub,et al.  On the g J Values of the Alkali Atoms , 1949 .

[36]  J. P. Gordon,et al.  Molecular Microwave Oscillator and New Hyperfine Structure in the Microwave Spectrum of N H-3 , 1954 .

[37]  Daniel J Heinzen,et al.  Progress at NIST toward absolute frequency standards using stored ions , 1990 .

[38]  C. cohen-tannoudji,et al.  Dressed-atom approach to atomic motion in laser light: the dipole force revisited , 1985 .

[39]  D. Wineland,et al.  Time, frequency and physical measurement , 1978 .

[40]  R. Decher,et al.  Test of relativistic gravitation with a space-borne hydrogen maser , 1980 .

[41]  T. Maiman Stimulated Optical Radiation in Ruby , 1960, Nature.

[42]  J. V. L. PARRY,et al.  An Atomic Standard of Frequency and Time Interval: A Cæsium Resonator , 1955, Nature.

[43]  Jon H. Shirley,et al.  The new NIST optically pumped cesium frequency standard , 1990 .

[44]  Chu,et al.  Trapping of neutral sodium atoms with radiation pressure. , 1987, Physical review letters.

[45]  C. cohen-tannoudji,et al.  Laser cooling below the one-photon recoil by velocity-selective coherent population trapping. , 1988, Physical review letters.

[46]  Chu,et al.  Experimental observation of optically trapped atoms. , 1986, Physical review letters.

[47]  H. Dehmelt,et al.  Spin Resonance of Free Electrons Polarized by Exchange Collisions , 1958 .

[48]  Wineland,et al.  Sympathetic cooling of trapped ions: A laser-cooled two-species nonneutral ion plasma. , 1986, Physical review letters.