Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology

Abstract : A comprehensive scheme is described to construct rational solid T-splines from boundary triangulations with arbitrary topology. To extract the topology of the input geometry, we first compute a smooth harmonic scalar field defined over the mesh and saddle points are extracted to determine the topology. By dealing with the saddle points, a polycube whose topology is equivalent to the input geometry is built and it serves as the parametric domain for the solid T-spline. A polycube mapping is then used to build a one-to-one correspondence between the input triangulation and the polycube boundary. After that, we choose the deformed octree subdivision of the polycube as the initial T-mesh, and make it valid through pillowing, quality improvement and applying templates to handle extraordinary nodes and partial extraordinary nodes. The obtained T-spline is C2-continuous everywhere over the boundary surface except for the local region surrounding polycube corner nodes. The efficiency and robustness of the presented technique are demonstrated with several applications in isogeometric analysis.

[1]  Chi-Wing Fu,et al.  A divide-and-conquer approach for automatic polycube map construction , 2009, Comput. Graph..

[2]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[3]  Tom Lyche,et al.  T-spline simplification and local refinement , 2004, ACM Trans. Graph..

[4]  J. M. Cascón,et al.  A new approach to solid modeling with trivariate T-splines based on mesh optimization , 2011 .

[5]  Paolo Cignoni,et al.  PolyCube-Maps , 2004, SIGGRAPH 2004.

[6]  T. Hughes,et al.  Solid T-spline construction from boundary representations for genus-zero geometry , 2012 .

[7]  Hong Qin,et al.  Polycube splines , 2007, Comput. Aided Des..

[8]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[9]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[10]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[11]  Martin Aigner,et al.  Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.

[12]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[13]  Hiromasa Suzuki,et al.  3D geometric metamorphosis based on harmonic map , 1997, Proceedings The Fifth Pacific Conference on Computer Graphics and Applications.

[14]  Elaine Cohen,et al.  Volumetric parameterization and trivariate B-spline fitting using harmonic functions , 2009, Comput. Aided Geom. Des..

[15]  Paul M. Thompson,et al.  Genus zero surface conformal mapping and its application to brain surface mapping , 2004, IEEE Transactions on Medical Imaging.

[16]  Hong Qin,et al.  Restricted Trivariate Polycube Splines for Volumetric Data Modeling , 2012, IEEE Transactions on Visualization and Computer Graphics.

[17]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[18]  Hong Qin,et al.  Generalized PolyCube Trivariate Splines , 2010, 2010 Shape Modeling International Conference.

[19]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[20]  Elaine Cohen,et al.  Volumetric parameterization and trivariate b-spline fitting using harmonic functions , 2008, SPM '08.

[21]  Charlie C. L. Wang,et al.  Automatic PolyCube-Maps , 2008, GMP.

[22]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, ACM Trans. Graph..

[23]  T. Hughes,et al.  Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline , 2012 .

[24]  Hong Qin,et al.  Multiresolution heterogeneous solid modeling and visualization using trivariate simplex splines , 2004, SM '04.

[25]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[26]  Bert Jüttler,et al.  Advances in Geometric Modeling and Processing , 2008 .

[27]  Michael Garland,et al.  Harmonic functions for quadrilateral remeshing of arbitrary manifolds , 2005, Comput. Aided Geom. Des..

[28]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .